RESUMEN
This study introduces an innovative approach for the valorization and protection of anthocyanins from 'Benihoppe' strawberry (Fragaria × ananassa Duch.) based on acidified natural deep eutectic solvent (NADES). Choline chloride-citric acid (ChCl-CA, 1:1) was selected and acidified to enhance the valorization and protection of anthocyanins through hydrogen bond. The optimal conditions (ultrasonic power of 318 W, extraction temperature of 61 °C, liquid-to-solid ratio of 33 mL/g, ultrasonic time of 19 min), yielded the highest anthocyanins of 1428.34 µg CGE/g DW. UPLC-Triple-TOF/MS identified six anthocyanins in acidified ChCl-CA extract. Stability tests indicated that acidified ChCl-CA significantly increased storage stability of anthocyanins in high temperature and light treatments. Molecular dynamics results showed that acidified ChCl-CA system possessed a larger diffusion coefficient (0.05 m2/s), hydrogen bond number (145) and hydrogen bond lifetime (4.38 ps) with a reduced intermolecular interaction energy (-1329.74 kcal/mol), thereby efficiently valorizing and protecting anthocyanins from strawberries.
Asunto(s)
Antocianinas , Fragaria , Solventes/química , Antocianinas/química , Fragaria/química , Disolventes Eutécticos Profundos , Extractos Vegetales/químicaRESUMEN
Economic value of the global potato harvest is impacted by sprouting during storage. We examined how sprouting might be reduced or eliminated using citral, a naturally occurring component in citrus fruit peel. The current study integrated both loading and sustained release of citral using emulsification-based interfacial synthesis of hollow MIL-88A. The structural properties and compositions of MIL-88A and hollow MIL-88A were confirmed using SEM, EDS, and XRD. BET analysis showed a surface area of 30.36 m2 g-1, pore volume of 0.21 cm3 g-1, and an average pore radius of 13.56 nm for hollow MIL-88A. Citral was successfully loaded into 10 g of MIL-88A and hollow MIL-88A, with a total citral load of 0.21 cm3 and 1.82 cm3, respectively. The citral-loaded hollow MIL-88A induced a sustained release of citral, which effectively inhibited the sprouting, leading to higher starch content by 41%, lower weight losses, reducing sugar content, α-Amylase, ß-amylase, and starch phosphorylase activities by 75%, 55%, 34%, 31%, and 43%, respectively. The citral-loaded hollow MIL-88A might inhibit sprouting by suppressing gibberellin and indole-3-acetic acid while maintaining abscisic acid.