RESUMEN
Our objective was to explore the physiological role of the intestinal endocannabinoids in the regulation of appetite upon short-term exposure to high-fat-diet (HFD) and understand the mechanisms responsible for aberrant gut-brain signaling leading to hyperphagia in mice lacking Napepld in the intestinal epithelial cells (IECs). We generated a murine model harboring an inducible NAPE-PLD deletion in IECs (NapepldΔIEC). After an overnight fast, we exposed wild-type (WT) and NapepldΔIEC mice to different forms of lipid challenge (HFD or gavage), and we compared the modification occurring in the hypothalamus, in the vagus nerve, and at endocrine level 30 and 60 min after the stimulation. NapepldΔIEC mice displayed lower hypothalamic levels of N-oleoylethanolamine (OEA) in response to HFD. Lower mRNA expression of anorexigenic Pomc occurred in the hypothalamus of NapepldΔIEC mice after lipid challenge. This early hypothalamic alteration was not the consequence of impaired vagal signaling in NapepldΔIEC mice. Following lipid administration, WT and NapepldΔIEC mice had similar portal levels of glucagon-like peptide-1 (GLP-1) and similar rates of GLP-1 inactivation. Administration of exendin-4, a full agonist of GLP-1 receptor (GLP-1R), prevented the hyperphagia of NapepldΔIEC mice upon HFD. We conclude that in response to lipid, NapepldΔIEC mice displayed reduced OEA in brain and intestine, suggesting an impairment of the gut-brain axis in this model. We speculated that decreased levels of OEA likely contributes to reduce GLP-1R activation, explaining the observed hyperphagia in this model. Altogether, we elucidated novel physiological mechanisms regarding the gut-brain axis by which intestinal NAPE-PLD regulates appetite rapidly after lipid exposure.
Asunto(s)
Encéfalo/fisiología , Fenómenos Fisiológicos del Sistema Digestivo , Ingestión de Alimentos/fisiología , Fosfolipasa D/fisiología , Animales , Dieta Alta en Grasa , Dipeptidil Peptidasa 4/metabolismo , Endocannabinoides/metabolismo , Glándulas Endocrinas/metabolismo , Etanolaminas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Hiperfagia/genética , Hiperfagia/fisiopatología , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiología , Ácidos Oléicos/metabolismo , Fosfolipasa D/genética , Nervio Vago/metabolismoRESUMEN
Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus1. The gut microbiota is a new key contributor involved in the onset of obesity-related disorders2. In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated type 2 diabetes mellitus or hypertension3-8. Since the administration of A. muciniphila has never been investigated in humans, we conducted a randomized, double-blind, placebo-controlled pilot study in overweight/obese insulin-resistant volunteers; 40 were enrolled and 32 completed the trial. The primary end points were safety, tolerability and metabolic parameters (that is, insulin resistance, circulating lipids, visceral adiposity and body mass). Secondary outcomes were gut barrier function (that is, plasma lipopolysaccharides) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010 A. muciniphila bacteria either live or pasteurized for three months was safe and well tolerated. Compared to placebo, pasteurized A. muciniphila improved insulin sensitivity (+28.62 ± 7.02%, P = 0.002), and reduced insulinemia (-34.08 ± 7.12%, P = 0.006) and plasma total cholesterol (-8.68 ± 2.38%, P = 0.02). Pasteurized A. muciniphila supplementation slightly decreased body weight (-2.27 ± 0.92 kg, P = 0.091) compared to the placebo group, and fat mass (-1.37 ± 0.82 kg, P = 0.092) and hip circumference (-2.63 ± 1.14 cm, P = 0.091) compared to baseline. After three months of supplementation, A. muciniphila reduced the levels of the relevant blood markers for liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (clinical trial no. NCT02637115 ) shows that the intervention was safe and well tolerated and that supplementation with A. muciniphila improves several metabolic parameters.
Asunto(s)
Suplementos Dietéticos , Obesidad/dietoterapia , Sobrepeso/dietoterapia , Verrucomicrobia , Adulto , Anciano , Método Doble Ciego , Heces/microbiología , Microbioma Gastrointestinal , Humanos , Resistencia a la Insulina , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/microbiología , Sobrepeso/metabolismo , Sobrepeso/microbiología , Proyectos PilotoRESUMEN
Increasing evidence suggests that polyphenols have a significant potential in the prevention and treatment of risk factors associated with metabolic syndrome. The objective of this study was to assess the metabolic outcomes of two polyphenol-containing extracts from cinnamon bark (CBE) and grape pomace (GPE) on C57BL/6J mice fed a high-fat diet (HFD) for 8 wk. Both CBE and GPE were able to decrease fat mass gain and adipose tissue inflammation in mice fed a HFD without reducing food intake. This was associated with reduced liver steatosis and lower plasma nonesterified fatty acid levels. We also observed a beneficial effect on glucose homeostasis, as evidenced by an improved glucose tolerance and a lower insulin resistance index. These ameliorations of the overall metabolic profile were associated with a significant impact on the microbial composition, which was more profound for the GPE than for the CBE. At the genus level, Peptococcus were decreased in the CBE group. In the GPE-treated group, several key genera that have been previously found to be linked with HFD, metabolic effects, and gut barrier integrity were affected: we observed a decrease of Desulfovibrio, Lactococcus, whereas Allobaculum and Roseburia were increased. In addition, the expression of several antimicrobial peptides and tight junction proteins was increased in response to both CBE and GPE supplementation, indicating an improvement of the gut barrier function. Collectively, these data suggest that CBE and GPE can ameliorate the overall metabolic profile of mice on a high-fat diet, partly by acting on the gut microbiota.
Asunto(s)
Cinnamomum zeylanicum/química , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Enfermedades Metabólicas/prevención & control , Extractos Vegetales/farmacología , Vitis/química , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Experimental/prevención & control , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/microbiología , Hígado Graso/prevención & control , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/microbiología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/prevención & control , Permeabilidad , Extractos Vegetales/uso terapéuticoRESUMEN
OBJECTIVE: Dietary supplementation with fermentable carbohydrate protects against body weight gain. Fermentation by the resident gut microbiota produces short-chain fatty acids, which act at free fatty acid receptor 2 (FFAR2). Our aim was to test the hypothesis that FFAR2 is important in regulating the beneficial effects of fermentable carbohydrate on body weight and to understand the role of gut hormones PYY and GLP-1. METHODS: Wild-type or Ffar2-/- mice were fed an inulin supplemented or control diet. Mice were metabolically characterized and gut hormone concentrations, enteroendocrine cell density measurements were carried out. Intestinal organoids and colonic cultures were utilized to substantiate the in vivo findings. RESULTS: We provide new mechanistic insight into how fermentable carbohydrate regulates metabolism. Using mice that lack FFAR2, we demonstrate that the fermentable carbohydrate inulin acts via this receptor to drive an 87% increase in the density of cells that produce the appetite-suppressing hormone peptide YY (PYY), reduce food intake, and prevent diet-induced obesity. CONCLUSION: Our results demonstrate that FFAR2 is predominantly involved in regulating the effects of fermentable carbohydrate on metabolism and does so, in part, by enhancing PYY cell density and release. This highlights the potential for targeting enteroendocrine cell differentiation to treat obesity.
Asunto(s)
Carbohidratos de la Dieta/metabolismo , Péptido YY/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Peso Corporal , Colon/citología , Suplementos Dietéticos , Ingestión de Alimentos , Ácidos Grasos Volátiles/metabolismo , Fermentación , Alimentos Fermentados , Hormonas Gastrointestinales/metabolismo , Microbioma Gastrointestinal/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Inulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/metabolismo , Receptores de Superficie Celular/fisiología , Aumento de PesoRESUMEN
Mounting evidence shows that the gut microbiota, an important player within the gut-brain communication axis, can affect metabolism, inflammation, brain function and behavior. Interestingly, gut microbiota composition is known to be altered in patients with metabolic syndrome (MetS), who also often display neuropsychiatric symptoms. The use of prebiotics, which beneficially alters the microbiota, may therefore be a promising way to potentially improve physical and mental health in MetS patients. This hypothesis was tested in a mouse model of MetS, namely the obese and type-2 diabetic db/db mice, which display emotional and cognitive alterations associated with changes in gut microbiota composition and hippocampal inflammation compared to their lean db/+ littermates. We assessed the impact of chronic administration (8weeks) of prebiotics (oligofructose) on both metabolic (body weight, food intake, glucose homeostasis) and behavioral (increased anxiety-like behavior and impaired spatial memory) alterations characterizing db/db mice, as well as related neurobiological correlates, with particular attention to neuroinflammatory processes. Prebiotic administration improved excessive food intake and glycemic dysregulations (glucose tolerance and insulin resistance) in db/db mice. This was accompanied by an increase of plasma anti-inflammatory cytokine IL-10 levels and hypothalamic mRNA expression of the anorexigenic cytokine IL-1ß, whereas unbalanced mRNA expression of hypothalamic orexigenic (NPY) and anorexigenic (CART, POMC) peptides was unchanged. We also detected signs of improved blood-brain-barrier integrity in the hypothalamus of oligofructose-treated db/db mice (normalized expression of tight junction proteins ZO-1 and occludin). On the contrary, prebiotic administration did not improve behavioral alterations and associated reduction of hippocampal neurogenesis displayed by db/db mice, despite normalization of increased hippocampal IL-6 mRNA expression. Of note, we found a relationship between the effect of treatment on dentate gyrus neurons and spatial memory. These findings may prove valuable for introducing novel approaches to treat some of the comorbidities associated with MetS.
Asunto(s)
Conducta Animal , Microbioma Gastrointestinal , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Prebióticos/administración & dosificación , Animales , Bifidobacterium , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Encefalitis/metabolismo , Encefalitis/microbiología , Hipocampo/metabolismo , Hipotálamo/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Memoria EspacialRESUMEN
SCOPE: Binge consumption of alcohol is an alarming global health problem. Acute ethanol intoxication is characterized by hepatic inflammation and oxidative stress, which could be promoted by gut barrier function alterations. In this study, we have tested the hypothesis of the hepatoprotective effect of rhubarb extract in a mouse model of binge drinking and we explored the contribution of the gut microbiota in the related metabolic effects. METHODS AND RESULTS: Mice were fed a control diet supplemented with or without 0.3% rhubarb extract for 17 days and were necropsied 6 h after an alcohol challenge. Supplementation with rhubarb extract changed the microbial ecosystem (assessed by 16S rDNA pyrosequencing) in favor of Akkermansia muciniphila and Parabacteroides goldsteinii. Furthermore, it improved alcohol-induced hepatic injury, downregulated key markers of both inflammatory and oxidative stresses in the liver tissue, without affecting significantly steatosis. In the gut, rhubarb supplementation increased crypt depth, tissue weight, and the expression of antimicrobial peptides. CONCLUSIONS: These findings suggest that some bacterial genders involved in gut barrier function, are promoted by phytochemicals present in rhubarb extract, and could therefore be involved in the modulation of the susceptibility to hepatic diseases linked to acute alcohol consumption.
Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Microbioma Gastrointestinal/efectos de los fármacos , Hepatitis Alcohólica/prevención & control , Extractos Vegetales/farmacología , Rheum/química , Animales , ADN Ribosómico , Microbioma Gastrointestinal/genética , Hepatitis Alcohólica/etiología , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacosRESUMEN
OBJECTIVE: Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin-resistance and low-grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet-induced obesity in rats. DESIGN AND METHODS: Wistar rats were fed with control diet (CD) or high-fat diet (HF) and either with or without supplemented ABM for 20 weeks. RESULTS: HF diet-induced body weight gain and increased fat mass compared to CD. In addition HF-fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF-fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet-induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM-treated rats suggesting a decrease in lipid absorption. CONCLUSIONS: Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.
Asunto(s)
Agaricus , Dieta Alta en Grasa , Suplementos Dietéticos , Resistencia a la Insulina , Obesidad/prevención & control , Animales , Biomarcadores/sangre , Glucemia/análisis , Composición Corporal , Calorimetría Indirecta , Grasas de la Dieta/administración & dosificación , Metabolismo Energético , Tracto Gastrointestinal/microbiología , Intolerancia a la Glucosa , Inflamación/prevención & control , Insulina/sangre , Grasa Intraabdominal , Leptina/sangre , Lipasa/análisis , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Masculino , Microbiota , Probióticos/administración & dosificación , Ratas , Ratas Wistar , Grasa Subcutánea Abdominal , Aumento de PesoRESUMEN
Obesity and related metabolic disorders such as insulin resistance and type 2 diabetes are associated with a low-grade inflammatory state possibly through changes in gut microbiota composition and the development of higher plasma lipopolysaccharide (LPS) levels, i.e. metabolic endotoxemia. Various phytochemical compounds have been investigated as potential tools to regulate these metabolic features. Humulus lupulus L. (hops) contains several classes of compounds with anti-inflammatory potential. Recent evidence suggests that hops-derived compounds positively impact adipocyte metabolism and glucose tolerance in obese and diabetic rodents via undefined mechanisms. In this study, we found that administration of tetrahydro iso-alpha acids (termed META060) to high-fat diet (HFD)-fed obese and diabetic mice for 8 weeks reduced body weight gain, the development of fat mass, glucose intolerance, and fasted hyperinsulinemia, and normalized insulin sensitivity markers. This was associated with reduced portal plasma LPS levels, gut permeability, and higher intestinal tight junction proteins Zonula occludens-1 and occludin. Moreover, META060 treatment increased the plasma level of the anti-inflammatory cytokine interleukin-10 and decreased the plasma level of the pro-inflammatory cytokine granulocyte colony-stimulating factor. In conclusion, this research allows us to decipher a novel mechanism contributing to the positive effects of META060 treatment, and supports the need to investigate such compounds in obese and type 2 diabetic patients.