Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 6001, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045885

RESUMEN

Tithonia diversifolia is widely used in African traditional medicine for the treatment of a large number of ailments and disorders, including malaria. In the present study, we evaluated the repellent activity of essential oils (EO) of this plant against Anopheles coluzzii, a major vector of malaria in Africa. Fresh leaves of T. diversifolia were used to extract EO, which were used to perform repellency assays in the laboratory and in the field using commercially available N,N-Diethyl-meta-toluamide (DEET) and Cymbopogon (C.) citratus EO as positive controls and vaseline as negative control. The repellency rates and durations of protection of the human volunteers involved were used as measures of repellent activity. Chemical composition of the T. diversifolia EO was established further by gas chromatography coupled with mass spectrometry. The moisture content and oil yield were 81% and 0.02% respectively. A total of 29 compounds in the T. diversifolia EO was identified, with D-limonene (20.1%), α-Copaene (10.3%) and o-Cymene (10.0%) as the most represented. In field studies, the mean time of protection against mosquito bites was significantly lower in T. diversifolia EO-treated volunteers compared to treatments with C. citratus EO (71 min versus 125 min, p = 0.04), but significantly higher when compared with the non-treated volunteers (71 min vs 0.5 min, p = 0.03). The same pattern was found in laboratory repellency assays against A. coluzzii. In contrast, repulsion rates were statistically similar between T. diversifolia EO and positive controls. In conclusion, the study suggests promising repellent potential of leaves of T. diversifolia EO against A. coluzzii.


Asunto(s)
Anopheles , Asteraceae , Repelentes de Insectos , Malaria , Aceites Volátiles , Animales , Humanos , Aceites Volátiles/farmacología , Asteraceae/química , Tithonia , Cromatografía de Gases y Espectrometría de Masas , Mosquitos Vectores , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , DEET/farmacología , Malaria/prevención & control , Aceites de Plantas/farmacología
2.
Acta Trop ; 214: 105792, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310077

RESUMEN

Studies capturing the high efficiency of green-synthesized metal nanoparticles (NPs) in targeting mosquito vectors of the world's main infectious diseases suggest the NPs' possible utilization as bio-insecticides. However, it is necessary to confirm that these potential bio-insecticides are not harmful to non-target organisms that are often sympatric and natural enemies of the vectors of these diseases. In this systematic review, we comprehensively analyse the content of 56 publications focused on the potentially deleterious effects of NPs on these non-target organisms. Current research on biosynthesised NPs, characterization, and impact on mosquito vectors and non-target larvivorous organisms is reviewed and critically discussed. Finally, we pinpoint some major challenges that merit future investigation. Plants (87.5%) were mainly used for synthesizing NPs in the studies. NPs were found to be spherical or mainly spherical in shape with a large distribution size. In most of the included studies, NPs showed interesting mosquitocidal activity (LC50 < 50 ppm). Some plant families (e.g., Meliaceae, Poaceae, Lamiaceae) have produced NPs with a particularly high larvicidal and pupicidal activity (LC50 < 10 ppm). Regarding non-target organisms, most of the studies concluded that NPs were safe to them, with boosted predatory activity in NP-treated milieu. In contrast, some studies reported NP-elicited adverse effects (i.e., genotoxic, nuclear, and enzymatic effects) on these non-target organisms. This review outlines the promising mosquitocidal effects of biosynthesized NPs, recognizing that NPs' potential usage is currently limited by the harm NPs are thought pose to non-target organism. It is of utmost importance to investigate green NPs to determine whether laboratory findings have applications in the real world.


Asunto(s)
Culicidae/efectos de los fármacos , Tecnología Química Verde/métodos , Insecticidas/farmacología , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Animales , Insecticidas/síntesis química , Extractos Vegetales/farmacología
3.
Malar J ; 18(1): 337, 2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581943

RESUMEN

BACKGROUND: The recent emergence in Southeast Asia of artemisinin resistance poses major threats to malaria control and elimination globally. Green nanotechnologies can constitute interesting tools for discovering anti-malarial medicines. This systematic review focused on the green synthesis of metal nanoparticles as potential source of new antiplasmodial drugs. METHODS: Seven electronic database were used following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: A total of 17 papers were included in the systematic review. 82.4% of the studies used plant leaves to produce nanoparticles (NPs) while three studies used microorganisms, including bacteria and fungi. Silver was the main metal precursor for the synthesis of NPs. The majority of studies obtained nanoparticles spherical in shape, with sizes ranging between 4 and 65 nm, and reported no or little cytotoxic effect of the NPs. Results based on 50% inhibitory concentration (IC50) varied between studies but, in general, could be divided into three NP categories; (i) those more effective than positive controls, (ii) those more effective than corresponding plant extracts and, (iii) those less effective than the positive controls or plant extracts. CONCLUSIONS: This study highlights the high antiplasmodial potential of green-synthesized metal nanoparticles thereby underscoring the possibility to find and develop new anti-malarial drugs based on green synthesis approaches. However, the review also highlights the need for extensive in vitro and in vivo studies to confirm their safety in humans and the elucidation of the mechanism of action.


Asunto(s)
Antimaláricos/síntesis química , Descubrimiento de Drogas/tendencias , Nanopartículas del Metal/química , Hojas de la Planta/metabolismo , Plasmodium falciparum/efectos de los fármacos , Artemisininas/farmacología , Malaria/tratamiento farmacológico , Extractos Vegetales/química , Plata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA