Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Comput Biol Med ; 145: 105452, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364308

RESUMEN

SARS-CoV-2, a rapidly spreading new strain of human coronavirus, has affected almost all the countries around the world. The lack of specific drugs against SARS-CoV-2 is a significant hurdle towards the successful treatment of COVID-19. Thus, there is an urgent need to boost up research for the development of effective therapeutics against COVID-19. In the current study, we investigated the efficacy of 81 medicinal plant-based bioactive compounds against SARS-CoV-2 Mpro by using various in silico techniques. The interaction affinities of polyphenolic compounds towards SARS-CoV-2 Mpro was assessed via intramolecular (by Quantum Mechanic), intermolecular (by Molecular Docking), and spatial (by Molecular Dynamic) simulations. Our obtained result demonstrate that Hesperidin, rutin, diosmin, and apiin are most effective compounds agents against SARS-CoV-2 Mpro as compared to Nelfinavir (positive control). This study will hopefully pave a way for advanced experimental research to evaluate the in vitro and in vivo efficacy of these compounds for the treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Polifenoles/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2
2.
Phytomedicine ; 85: 153310, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32948420

RESUMEN

BACKGROUND: SARS-CoV-2, an emerging strain of coronavirus, has affected millions of people from all the continents of world and received worldwide attention. This emerging health crisis calls for the urgent development of specific therapeutics against COVID-19 to potentially reduce the burden of this emerging pandemic. PURPOSE: This study aims to evaluate the anti-viral efficacy of natural bioactive entities against COVID-19 via molecular docking and molecular dynamics simulation. METHODS: A library of 27 caffeic-acid derivatives was screened against 5 proteins of SARS-CoV-2 by using Molegro Virtual Docker 7 to obtain the binding energies and interactions between compounds and SARS-CoV-2 proteins. ADME properties and toxicity profiles were investigated via www.swissadme.ch web tools and Toxtree respectively. Molecular dynamics simulation was performed to determine the stability of the lead-protein interactions. RESULTS: Our obtained results has uncovered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin A as potent modulators of COVID-19 possessing more binding energies than nelfinavir against COVID-19 Mpro, Nsp15, SARS-CoV-2 spike S2 subunit, spike open state and closed state structure respectively. While Calceolarioside B was identified as pan inhibitor, showing strong molecular interactions with all proteins except SARS-CoV-2 spike glycoprotein closed state. The results are supported by 20 ns molecular dynamics simulations of the best complexes. CONCLUSION: This study will hopefully pave a way for development of phytonutrients-based antiviral therapeutic for treatment or prevention of COVID-19 and further studies are recommended to evaluate the antiviral effects of these phytochemicals against SARS-CoV-2 in in vitro and in vivo models.


Asunto(s)
Antivirales/farmacología , Ácidos Cafeicos/farmacología , Alimentos Funcionales , SARS-CoV-2/efectos de los fármacos , Arbutina/análogos & derivados , Arbutina/farmacología , Sitios de Unión , Glucósidos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA