Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895849

RESUMEN

Natural products such as domestic herbal drugs which are easily accessible and cost-effective can be used as a complementary treatment in mild and moderate COVID-19 cases. This study aimed to detect and describe the efficiency of phenolics detected in the galangal-cinnamon mixture in the inhibition of SARS-CoV-2's different protein targets. The potential antiviral effect of galangal-cinnamon aqueous extract (GCAE) against Low Pathogenic HCoV-229E was assessed using cytopathic effect inhibition assay and the crystal violet method. Low Pathogenic HCoV-229E was used as it is safer for in vitro laboratory experimentation and due to the conformation and the binding pockets similarity between HCoV-229E and SARS-CoV-2 MPro. The GCAE showed a significant antiviral effect against HCoV-229E (IC50 15.083 µg/mL). Twelve phenolic compounds were detected in the extract with ellagic, cinnamic, and gallic acids being the major identified phenolic acids, while rutin was the major identified flavonoid glycoside. Quantum-chemical calculations were made to find molecular properties using the DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum-chemical values such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, softness, and electronegativity values were calculated and discussed. Phenolic compounds detected by HPLC-DAD-UV in the GCAE were docked into the active site of 3 HCoV-229E targets (PDB IDs. 2ZU2, 6U7G, 7VN9, and 6WTT) to find the potential inhibitors that block the Coronavirus infection pathways from quantum and docking data for these compounds. There are good adaptations between the theoretical and experimental results showing that rutin has the highest activity against Low Pathogenic HCoV-229E in the GCAE extract.

2.
Oxid Med Cell Longev ; 2022: 6702773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35178158

RESUMEN

Doxorubicin (DOX) is an effective anticancer agent with a wide spectrum of activities. However, it has many adverse effects on various organs especially on the liver. Thymol, one of the major components of thyme oil, has biological properties that include anti-inflammatory and antioxidant activities. Thus, this study was designed to examine thyme oil and thymol for their ability to prevent doxorubicin-induced hepatotoxicity in Wistar rats. Hepatotoxicity was induced by an intraperitoneal injection of doxorubicin, at a dose of 2 mg/kg bw/week, for seven weeks. Doxorubicin-injected rats were supplemented with thyme oil and thymol at doses 250 and 100 mg/kg bw, respectively, four times/week by oral gavage for the same period. Treatment of rats with thyme oil and thymol reversed the high serum activities of AST, ALT, and ALP and total bilirubin, AFP, and CA19.9 levels, caused by doxorubicin. Thyme oil and thymol also reduced the high levels of TNF-α and the decreased levels of both albumin and IL-4. These agents ameliorated doxorubicin-induced elevation in hepatic lipid peroxidation and associated reduction in GSH content and GST and GPx activities. Further, the supplementation with thyme oil and thymol significantly augmented mRNA expression of the level of antiapoptotic protein Bcl-2 and significantly downregulated nuclear and cytoplasmic levels of the hepatic apoptotic mediator p53. Thus, thyme oil and thymol successfully counteracted doxorubicin-induced experimental hepatotoxicity via their anti-inflammatory, antioxidant, and antiapoptotic properties.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Doxorrubicina/efectos adversos , Inflamación/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Hepatopatías/etiología , Aceites Volátiles/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Humanos , Hepatopatías/patología , Masculino , Aceites Volátiles/farmacología , Aceites de Plantas , Ratas , Ratas Wistar , Timol , Thymus (Planta)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA