Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Bot ; 112(6): 1045-55, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23965617

RESUMEN

BACKGROUND AND AIMS: Dioecism characterizes many crop species of economic value, including kiwifruit (Actinidia deliciosa). Kiwifruit male sterility occurs at the microspore stage. The cell walls of the microspores and the pollen of the male-sterile and male-fertile flowers, respectively, differ in glucose and galactose levels. In numerous plants, pollen formation involves normal functioning and degeneration timing of the tapetum, with calcium and carbohydrates provided by the tapetum essential for male fertility. The aim of this study was to determine whether the anther wall controls male fertility in kiwifruit, providing calcium and carbohydrates to the microspores. METHODS: The events occurring in the anther wall and microspores of male-fertile and male-sterile anthers were investigated by analyses of light microscopy, epifluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL assay) and transmission electron microscopy coupled with electron spectroscopy. The possibility that male sterility was related to anther tissue malfunctioning with regard to calcium/glucose/galactose provision to the microspores was also investigated by in vitro anther culture. KEY RESULTS: Both tapetum and the middle layer showed secretory activity and both degenerated by programmed cell death (PCD), but PCD was later in male-sterile than in male-fertile anthers. Calcium accumulated in cell walls of the middle layer and tapetum and in the exine of microspores and pollen, reaching higher levels in anther wall tissues and dead microspores of male-sterile anthers. A specific supply of glucose and calcium induced normal pollen formation in in vitro-cultured anthers of the male-sterile genotype. CONCLUSIONS: The results show that male sterility in kiwifruit is induced by anther wall tissues through prolonged secretory activity caused by a delay in PCD, in the middle layer in particular. In vitro culture results support the sporophytic control of male fertility in kiwifruit and open the way to applications to overcome dioecism and optimize kiwifruit production.


Asunto(s)
Actinidia/fisiología , Apoptosis/fisiología , Infertilidad Vegetal/fisiología , Polen/fisiología , Actinidia/citología , Actinidia/crecimiento & desarrollo , Calcio/metabolismo , Pared Celular/metabolismo , Flores/citología , Flores/crecimiento & desarrollo , Flores/fisiología , Glucosa/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Polen/citología , Polen/crecimiento & desarrollo , Reproducción
2.
Plant Cell ; 20(7): 1760-74, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18628351

RESUMEN

We provide evidence on the localization, synthesis, transport, and effects of auxin on the processes occurring late in Arabidopsis thaliana stamen development: anther dehiscence, pollen maturation, and preanthesis filament elongation. Expression of auxin-sensitive reporter constructs suggests that auxin effects begin in anthers between the end of meiosis and the bilocular stage in the somatic tissues involved in the first step of dehiscence as well as in the microspores and in the junction region between anther and filament. In situ hybridizations of the auxin biosynthetic genes YUC2 and YUC6 suggest that auxin is synthesized in anthers. In agreement with the timing of auxin effects, the TIR1, AFB1, AFB2, and AFB3 auxin receptor-encoding genes are transcribed in anthers only during late stages of development starting at the end of meiosis. We found that in tir1 afb triple and quadruple mutants, anther dehiscence and pollen maturation occur earlier than in the wild type, causing the release of mature pollen grains before the completion of filament elongation. We also assessed the contribution of auxin transport to late stamen developmental processes. Our results suggest that auxin synthesized in anthers plays a major role in coordinating anther dehiscence and pollen maturation, while auxin transport contributes to the independent regulation of preanthesis filament elongation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas F-Box/genética , Proteínas F-Box/fisiología , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Hibridación in Situ , Datos de Secuencia Molecular , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA