Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 420: 135649, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080111

RESUMEN

Apple cider juice yield at harvest and after 15 and 30 days of storage durations was studied by analyzing the mechanical properties of fresh and plasmolyzed flesh, water distribution, cell wall polysaccharide composition and organization of the apples; in this study, the apple varieties used were Avrolles, Douce coetligne, Douce moen, Judor, Petit jaune. Juice yield mainly depended on the apple variety and the storage duration. Cellulose organization and cell wall pectin hydration were affected by ripening and are related to fruit firmness. Flesh viscoelastic mechanical properties were not general indications of juice yields. However, these properties helped distinguish the varieties according to flesh damage caused by ice crystals upon freezing. Cell encapsulation of the juice in the flesh contributed to lower yields. The apple variety and harvesting mode are recommended as a means to better control juice yield variations.


Asunto(s)
Malus , Malus/química , Polisacáridos/análisis , Pectinas/análisis , Celulosa/análisis , Frutas/química
2.
Carbohydr Polym ; 232: 115768, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952582

RESUMEN

The viscoelastic mechanical properties are important quality traits for fleshy fruit uses. The contribution of cell wall polysaccharides chemistry and organization on their variability was studied in six varieties of apple. Correlation between damping and storage modulus of plasmolyzed tissue distinguished better apple varieties on their viscoelasticity than fresh samples. Galactose, arabinose and uronic acids correlated positively with the storage modulus of fresh apple samples (E'f). These corresponded to 4-linked galactan but no specific arabinose linkage. Galacturonic acid branched on O-3 and terminal rhamnose correlated negatively with E'f. These correlations formed two groups of fruit except for branched methyl-esterified galacturonic. Solid-state 13C NMR spectroscopy analyses showed that E'f correlated negatively with cellulose C4 T1ρH relaxation and positively with pectin methyl esters THH proton diffusion. The results point to the key roles of pectin structure and hydration and cellulose microfibrils distribution on apple mechanical properties.


Asunto(s)
Pared Celular/química , Celulosa/análisis , Frutas/química , Malus/química , Pectinas/análisis , Agua/análisis , Tamaño de la Partícula , Propiedades de Superficie , Viscosidad
3.
Carbohydr Polym ; 225: 115123, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521280

RESUMEN

Different amounts of cellulose nanocrystals (CNCs) were added to glycerol-plasticized thermoplastic starch (TPS) to obtain bio-based nanocomposites. First, nanocomposites are prepared by extrusion and their structure is studied at different scales using WAXS (Wide Angle X-ray Scattering) and solid-state NMR (Nuclear Magnetic Resonance) for local/crystalline organization, AF4 (Asymmetrical Flow Field-Flow Fractionation) for molecular weight and chain length, and SEM (Scanning Electron Microscopy) for the morphology at a larger scale. Then, relevant mechanical properties and behavior in physiological conditions (swelling, enzymatic degradation) are characterized. The results show that the incorporation of cellulose nanocrystals up to 2.5 wt% causes a mechanical reinforcement as determined by DMTA (Dynamic Mechanical Thermal Analysis) and reduces the swelling and the enzymatic degradation of the materials compared to reference TPS. This could be linked to the formation of starch-cellulose hydrogen and hydroxyl bonds. Conversely, above 5 wt% CNC content nanocrystals seem to aggregate which in turn worsens the behavior in physiological conditions.


Asunto(s)
Plásticos Biodegradables/química , Celulosa/química , Nanocompuestos/química , Nanopartículas/química , Plastificantes/química , Almidón/química , Solanum tuberosum/metabolismo , Resistencia a la Tracción , Humectabilidad
4.
J Agric Food Chem ; 60(26): 6594-605, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22697314

RESUMEN

Cell wall composition, pectin, and hemicellulose fine structure variation were assessed in peach and related genotypes with contrasted texture and fruit shape. Cell walls were prepared from four commercial peaches, eight genotypes from the Jalousia × Fantasia peach cross, and six genotypes from the Earlygold peach × Texas almond cross. Sugar composition was determined chemically while fine structure of homogalacturonan pectin and xyloglucan hemicellulose were assessed by coupling pectin lyase and glucanase degradation, respectively, with MALDI-TOF MS analysis of the degradation products. The results indicate clear compositional and structural differences between the parents and their related genotypes on the basis of pectin versus cellulose/hemicellulose content and on the fine structure of homogalacturonan and xyloglucan. A relation between methyl- and acetyl-esterification of pectin with fruit shape is revealed in the Fantasia × Jalousia peach genotypes.


Asunto(s)
Pared Celular/química , Frutas/química , Polisacáridos/análisis , Prunus/química , Prunus/genética , Cruzamiento , Celulosa/análisis , Cruzamientos Genéticos , Esterificación , Genotipo , Pectinas/análisis , Pectinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA