Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Water Res ; 233: 119797, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870105

RESUMEN

Clean soil is a potential capping material for controlling internal nutrient loading and helping the recovery of macrophytes in eutrophic lakes, but the long-term effects and underlying mechanisms of clean soil capping under in-situ conditions remain poorly understood. In this study, a three-year field capping enclosure experiment combining intact sediment core incubation, in-situ porewater sampling, isotherm adsorption experiments and analysis of sediment nitrogen (N) and phosphorus (P) fractions was conducted to assess the long-term performance of clean soil capping on internal loading in Lake Taihu. Our results indicate that clean soil has excellent P adsorption and retention capacity as an ecologically safe capping material and can effectively mitigate NH4+-N and SRP (soluble reactive P) fluxes at the sediment-water interface (SWI) and porewater SRP concentration for one year after capping. The mean NH4+-N and SRP fluxes of capping sediment were 34.86 mg m-2 h-1 and -1.58 mg m-2 h-1, compared 82.99 mg m-2 h-1 and 6.29 mg m-2 h-1 for control sediment. Clean soil controls internal NH4+-N release through cation (mainly Al3+) exchange mechanisms, while for SRP, clean soil can not only react with SRP due to its high Al and Fe content, but also stimulate the migration of active Ca2+ to the capping layer, thus precipitating as Ca-bound P (Ca-P). Clean soil capping also contributed to the restoration of macrophytes during the growing season. However, the effect of controlling internal nutrient loading only lasted for one year under in-situ conditions, after which the sediment properties returned to pre-capping conditions. Our results highlight that clean Ca-poor soil is a promising capping material and further research is needed to extend the longevity of this geoengineering technology.


Asunto(s)
Suelo , Contaminantes Químicos del Agua , Lagos , Sedimentos Geológicos , Eutrofización , Fósforo/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , China
2.
Environ Sci Pollut Res Int ; 27(21): 25861-25869, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31420838

RESUMEN

Environmental sediment dredging is one of the most common methods for the remediation of contaminated sediments in lakes; however, debate continues as to whether the effectiveness of dredging methods contributes to this phenomenon. To determine sediment resuspension and nutrient release following dredging with a variety of dredging methods, four dredging treatments at wind speeds of 0-5.2 m/s were simulated in this study, namely suction dredging (SD), grab dredging (GD), ideal dredging with no residual sediments (ID), and non-dredging (ND). Field sediments from suction and grab dredging areas (including post-dredged and non-dredged sediments) of Lake Taihu were used to assess the release abilities of soluble reactive phosphorus (SRP) and ammonia nitrogen (NH4+-N) from the sediment-water interface. The effects of residual sediments on nutrient concentrations in water were also evaluated. The results reveal that inhibition of resuspension of particulate matter and nutrients released through sediment dredging decreases with increasing levels of residual sediment. Total suspended particulate matter content in the mean water columns of ID, SD, and GD under wind-induced disturbance (1.7-5.2 m/s) decreased by 67.5%, 56.8%, and 44.3%, respectively; total nitrogen and total phosphorus in ID (SD) treatments were 19.8% (12.9%) and 24.5% (11.2%) lower than that in ND treatment. However, there were ~ 1.6 and 1.5 times higher SRP and NH4+-N in the GD treatment compared with the ND treatment at the end of the resuspension experiment (0 m/s). A significant increase in the SRP and NH4+-N release rates at the sediment-water interface was also observed in field sediments from a grab dredging area, indicating that GD may pose a short-term risk of nutrient release to the water body. Hence, dredging methods with less residual sediments both during and after dredging improves the dredging quality.


Asunto(s)
Lagos , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Sedimentos Geológicos , Nutrientes , Fósforo/análisis , Agua
3.
Environ Pollut ; 246: 207-216, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30554127

RESUMEN

Dredging is frequently implemented for the reduction of internal nitrogen (N) and phosphorus (P) loadings and the control of eutrophication. Residuals during dredging activities and external pollution loadings after dredging both commonly contribute to influence the effectiveness of dredging and have been widely discussed. In the current study, the exchanges of N and P across the sediment-water interface (SWI) to these two factors were compared in a six-month field incubation experiment. The results showed that the continuous deposition of external suspended particulate matter (SPM) led ammonium nitrogen (NH4+N) and soluble reactive phosphorus (SRP) fluxes across the newly formed SWI to increase by factors of 4.16 and 12.71, respectively, while residual material caused the same fluxes to increase by factors of 2.06 and 5.06. Both the deposition of external SPM and the residual matter led to higher increase of the fluxes of P across the SWI than those of the fluxes of N across the SWI after dredging. The SPM easily adsorbed P in the water due to extensive adsorption of water soluble organic matter (consisting primarily of easily-decomposed humic-like substances), iron, and aluminum. However, the decomposition of organic matter in the SPM after the deposition on the dredged sediment accelerated the dissolution of redox-sensitive P and organic P across the SWI after dredging. Both the increase in the fluxes of N and P across the SWI would further increase the concentrations of N and P in the overlying water and thereby aggravate the eutrophication status in lakes. More frequent dredging operations might be necessary to reduce the fluxes of N and P from the sediment due to the continuous influence of the external SPM and the residual matter.


Asunto(s)
Sedimentos Geológicos/análisis , Lagos/química , Nitrógeno/análisis , Material Particulado/química , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Monitoreo del Ambiente/métodos , Eutrofización , Sustancias Húmicas/análisis , Hierro , Ciclo del Nitrógeno , Oxidación-Reducción , Agua/química
4.
Water Environ Res ; 90(11): 1956-1963, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30486923

RESUMEN

A year-long field investigation was carried out in the most heavily polluted bay of Lake Chaohu to assess the temporal exchanges of ammonium nitrogen () and soluble reactive phosphorus (SRP) across the sediment-water interface (SWI) and to provide remediation advises. Results showed that the monthly average fluxes of and SRP were 31.38 and 6.98 mg m-2 d-1, respectively, both of which were higher than those in many other hyper-eutrophic lakes around the world. The exchanges of and SRP were both closed related to the oxygen penetration. Low oxygen penetration depth and generally negative oxygen uptake rates provoked the dissolution of redox sensitive phosphorus and labile in the sediment and increased the fluxes. In addition, the generally higher fluxes during late spring to autumn should be noted during the reduction of internal loadings, when applicable techniques should be implemented accordingly to achieve better reduction effects.


Asunto(s)
Sedimentos Geológicos/química , Lagos/química , Nitrógeno/química , Fósforo/química , Agua/química , Bahías , Taiwán
5.
Environ Sci Pollut Res Int ; 25(25): 24682-24694, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29916150

RESUMEN

In eutrophic lake restorations, in situ capping is an often considered method to control sediment internal phosphorus (P) pollution for mitigating eutrophication status. Subsequent aquatic macrophyte revegetation can directly derive P from the sediment for growth. However, the effects of capping with clean soils on internal P release from sediments under rooted aquatic macrophyte revegetation are still unclear. In the present study, the influences of sediment P remobilization by P. australis revegetation on P inactivation by capping were investigated based on an entire growth simulation study. Our findings showed during the growth of P. australis, tests conducted on total phosphorous (TP), calcium-bound P (Ca-P), loosely bound P (loose-P), organic P (Org-P), and iron-adsorbed P (Fe-P) found significant changes (p < 0.001). Specifically, the mean contents of TP and Ca-P decreased by 291.1 and 224.2 mg kg-1, respectively, while those of Fe-P increased from 26.4 to 124.8 mg kg-1. In addition, sediment mobile-P contents increased coincidentally with the growth of P. australis during the whole course of experiment. Further analysis indicated calculated diffusion fluxes of soluble reactive phosphorus (SRP) generally increased with incubation time, although capping effectively induced the reduction of SRP concentration in pore water and its release to waters. Therefore, sediment P remobilization by P. australis revegetation was able to enhance P lability in lake sediments, with intermediate activation ability compared to other correlated water bodies. This phenomenon was most likely attributed to solubilization of sediment P by organic acids secreted from P. australis rhizosphere. Overall, sediment P remobilization by rooted macrophytes is unfavorable for capping to control internal P release to water column during eutrophic lake restorations.


Asunto(s)
Fósforo/análisis , Poaceae/fisiología , Contaminantes Químicos del Agua/análisis , Adsorción , Biodegradación Ambiental , Eutrofización , Sedimentos Geológicos/química , Hierro/análisis , Lagos , Suelo
6.
Environ Pollut ; 219: 639-648, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27357484

RESUMEN

Environmental dredging has been applied widely in Chinese lakes to reduce their internal nutrient loads. However, the efficacy of dredging to reduce internal loading of nitrogen (N) and phosphorus (P) and to improve water quality has been questioned by some researchers. In this study, the long-term (∼15 years) effects of dredging to reduce internal N and P loading in a closed, polluted urban lake were investigated. The results showed that the release of soluble reactive phosphorus (SRP) could be suppressed quickly after dredging, and that the dredging effect was sustained for about 18 months. A significant release of NH4+-N was discovered during the first 2-8 months after dredging, followed by maintenance of low-level release rates for about 21-32 months. The continuous inflowing of external pollution loading led to the increase in the release rates of SRP and NH4+-N. The external pollution loading was therefore reduced three years after dredging to strengthen the remediation effect. After that, high diffusive flux from the sediment was observed for both NH4+-N and SRP during summer seasons for about six years, followed by a decreasing trend. The NH4+-N concentration in the overlying water was reduced after the reduction of external loading, while a high concentration of SRP in the overlying water was still observed during summer seasons. In conclusion, the mid-term (<3 years) reduction of internal N and P loading could be achieved by dredging if the external pollution loading were not reduced. Achieving long-term control would require modification of external loading.


Asunto(s)
Monitoreo del Ambiente , Restauración y Remediación Ambiental/estadística & datos numéricos , Sedimentos Geológicos/química , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , China , Ciudades , Ciclo del Nitrógeno , Estaciones del Año , Contaminantes Químicos del Agua/análisis
7.
Environ Pollut ; 219: 568-579, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27312332

RESUMEN

Modified clay-based solid-phase phosphorous (P) sorbents are increasingly used as lake geoengineering materials for lake eutrophication control. However, some still dispute the feasibility of using these materials to control internal P loading from shallow eutrophic lakes. The lack of information about P behavior while undergoing frequent sediment resuspension greatly inhibits the modified minerals' use. In this study, a sediment resuspension generating system was used to simulate the effect of both moderate winds (5.1 m/s) and strong winds (8.7 m/s) on the stability of sediment treated by two geoengineering materials, Phoslock® (a lanthanum modified bentonite) and thermally-treated calcium-rich attapulgite. This study also presents an analysis of the P dynamics across the sediment-water interface of two shallow eutrophic lakes. In addition, the effect of wind velocity on P forms and P supply from the treated sediment were studied using chemical extraction and diffusive gradients in thin films (DGT) technique, respectively. Results showed that adding geoengineering materials can enhance the stability of surface sediment and reduce the erosion depth caused by wind accordingly. All treatments can effectively reduce soluble reactive phosphorus (SRP) concentration in overlying water when sediment is capped with thermally-treated calcium-rich attapulgite, which performs better than sediment mixed with modified attapulgite but not as well as sediment treated with Phoslock®. However, their efficiency decreased with the increase in occurrences of sediment resuspension. The addition of the selected geoengineering materials effectively reduced the P fluxes across sediment-water interface and lowered P supply ability from the treated sediment during sediment resuspension. The reduction of mobile P and enhancement of calcium bound P and residual P fraction in the treated sediment was beneficial to the long-term lake internal P loading management. All of the results indicated that the studied geoengineering materials are suitable for application in shallow eutrophic lakes with frequent sediment resuspension activity.


Asunto(s)
Bentonita/química , Restauración y Remediación Ambiental/métodos , Eutrofización , Sedimentos Geológicos/química , Lagos/química , Compuestos de Magnesio/química , Fósforo/análisis , Compuestos de Silicona/química , Contaminantes Químicos del Agua/análisis , Fósforo/química , Contaminantes Químicos del Agua/química , Viento
8.
Environ Pollut ; 219: 425-431, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27238762

RESUMEN

Surface sediment in eutrophic lakes is both a destination and a habitat for overwintering cyanobacteria. The resuspension and recovery of viable, overwintering cyanobacteria from the surface sediment during warm spring weather is usually the primary stage of cyanobacterial blooms (CBs) in shallow eutrophic lakes. Therefore, the elimination of overwintering cyanobacteria in sediment is vital to control CBs. In the present study, sediment plow-tillage (PT) was introduced as an innovative technique for eliminating overwintering cyanobacteria in sediments from Lake Chaohu. Four depths of PT (2, 5, 10, and 15 cm) were tested during the 42-day experiment. The results showed that rapid cell death during the first 0-7 d after PT was accompanied by high oxygen uptake rates. The viable cells in deeper sediment died more quickly and at a higher rate after PT. A PT depth of >10 cm effectively eliminated viable cyanobacteria (with a removal rate of 82.8%) from the sediment and prevented their resuspension. The activity of the viable cyanobacteria also decreased quickly as cyanobacteria were eliminated. It appears that the dark, anoxic environment of the deeper sediment after PT was responsible for the elimination of viable cells. Although high release rates of nitrogen and phosphorus were found to accompany the dying and decomposition of cyanobacteria during days 0-7 of the experiment, greater depth of PT was found to decrease nutrient concentrations in the overlying water. In conclusion, we recommend sediment PT as a new technique for eliminating overwintering algae in sediments. However, the release of nutrients from the sediment and the in situ control of CBs in lakes after PT should be further studied.


Asunto(s)
Cianobacterias , Sedimentos Geológicos/microbiología , Lagos/microbiología , Contaminación del Agua/prevención & control , China , Ecosistema , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Estaciones del Año
9.
Environ Pollut ; 211: 165-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26766534

RESUMEN

Dredging is frequently used in the river mouths of eutrophic lakes to reduce internal phosphorus (P) loading from the sediment. However, the accumulation of P-adsorbed suspended particulate matter (SPM) from the inflowing rivers negatively affects the post-dredging sediment-water interface and ultimately increases internal P loading. Here, a 360-d experiment was carried out to investigate the influence of riverine SPM on the efficacy of dredging in reducing internal P loading. SPM was added to dredged and undredged sediments collected from the confluence area of Lake Chaohu. Several parameters related to internal P loading, including oxygen profile, soluble reactive P, and ferrous iron across the sediment-water interface, organic matter, alkaline phosphatase activity, and P fractions, were measured throughout the experimental period. The results showed that the P content (especially mobile P) in the sediment increased to the pre-dredging level with the accumulation of SPM in the dredged sediment. In addition, the P flux across the sediment-water interface increased with the accumulation of SPM. Several characteristics of SPM, including high organic matter content, mobile P, high activity of alkaline phosphatase, and high biological activity, were considered correlated with the post-dredging increase in internal P loading. Overall, this study showed that the heavily contaminated riverine SPM regulates the long-term efficacy of dredging as a nutrient management option in the confluence area. Management is needed to avoid or reduce this phenomenon during dredging projects of this nature.


Asunto(s)
Material Particulado/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos , Ríos/química , Agua
10.
J Hazard Mater ; 266: 1-9, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24374559

RESUMEN

Flocculation is a promising method for controlling harmful algal blooms; however, little is known about the effects of algae deposition by flocculation on benthic oxygen (O2) and nutrient dynamics. In this study, we aimed to investigate the influence of cyanobacteria flocculation deposition on benthic O2 and phosphorus (P) dynamics and the role of tubificid worms in the process. Chitosan and sediment particles were used to flocculate and deposit cyanobacteria cells onto lake sediment. The impulse deposition of algal flocculation degraded the deposited algal cells, which decreased the O2 penetration depth in sediment and increased the O2 uptake rate. Algae deposition also increased the soluble reactive P (SRP) in pore water and loosely adsorbed P in sediment, and changed SRP flux. Tubificid worms transported algal cells deeper into the sediment, mitigated their degradation, and altered the O2 penetration depth, but not the O2 uptake rate. Tubificid worms enhanced the increase in pore-water SRP and loosely adsorbed P in sediment. Therefore, the deposition of algal flocculation modifies the benthic O2 and P dynamics, and tubificid worms can mitigate or enhance some of these processes.


Asunto(s)
Cianobacterias , Sedimentos Geológicos/análisis , Oligoquetos , Oxígeno/análisis , Fósforo/análisis , Animales , China , Clorofila/análisis , Clorofila A , Eutrofización , Floculación , Lagos
11.
Huan Jing Ke Xue ; 34(10): 3872-8, 2013 Oct.
Artículo en Chino | MEDLINE | ID: mdl-24364305

RESUMEN

A simulated experiment was carried out to study release features of internal source under different sediment dredging methods and the difference between two lake areas in Lake Taihu was also studied. The contaminated sediments were sampled from two sites in Meiliang Bay which were the Inner Bay (A) and the Outer Bay(B). Release rates of phosphorus after ideal dredging and suction dredging are about 20% and 72% of the control and the phosphorus release rate in Inner Bay(A) is about 80% of Outer Bay(B). Release rates of ammonia after ideal dredging and suction dredging are about 40% and 83% of the scallop dredging, but dredging process may even promote the release of ammonia in a short time, the ammonia release rate in Inner Bay(A) is about 150% higher than that in Outer Bay(B). Under the microcosm experiment condition, the ideal dredging method and the suction dredging method may have a better control of internal source in contrast with the scallop dredging. Altogether, sediment dredging may be a useful approach to decrease the release of internal source in the selected sites when the external nutrients are effectively controlled. Consider all kinds of dredging projects, the suction dredging should be the ideal option for sediment dredging in Lake Taihu.


Asunto(s)
Amoníaco/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos/química , Fósforo/análisis , China , Simulación por Computador
12.
J Environ Sci (China) ; 25(5): 925-32, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24218822

RESUMEN

The understanding of organic phosphorus (P) dynamics in sediments requires information on their species at the molecular level, but such information in sediment profiles is scarce. A sediment profile was selected from a large eutrophic lake, Lake Taihu (China), and organic P species in the sediments were detected using solution phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) following extraction of the sediments with a mixture of 0.25 mol/L NaOH and 50 mmol/L EDTA (NaOH-EDTA) solution. The results showed that P in the NaOH-EDTA extracts was mainly composed of orthophosphate, orthophosphate monoesters, phospholipids, DNA, and pyrophosphate. Concentrations of the major organic P compound groups and pyrophosphate showed a decreasing trend with the increase of depth. Their half-life times varied from 3 to 27 years, following the order of orthophosphate monoesters > phospholipids > or = DNA > pyrophosphate. Principal component analysis revealed that the detected organic P species had binding phases similar to those of humic acid-associated organic P (NaOH-NRP(HA)), a labile organic P pool that tends to transform to recalcitrant organic P pools as the early diagenetic processes proceed. This demonstrated that the depth attenuation of the organic P species could be partly attributed to their increasing immobilization by the sediment solids, while their degradation rates should be significantly lower than what were suggested in previous studies.


Asunto(s)
Sedimentos Geológicos/análisis , Compuestos Organofosforados/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , China , Ácido Edético/química , Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos/análisis , Espectroscopía de Resonancia Magnética , Compuestos Organofosforados/química , Fósforo/química , Isótopos de Fósforo , Hidróxido de Sodio/química , Contaminantes Químicos del Agua/química
13.
J Environ Sci (China) ; 25(4): 637-44, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23923771

RESUMEN

Organic phosphorus (nonreactive P, NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Taihu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRP(HA)), fulvic acid-associated NRP (NaOH-NRP(FA)) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCO3-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.


Asunto(s)
Sedimentos Geológicos/química , Lagos/química , Compuestos Orgánicos/aislamiento & purificación , Fósforo/química , Fósforo/aislamiento & purificación , Fraccionamiento Químico , China , Geografía , Ácido Clorhídrico/química , Hidróxido de Sodio/química , Contaminantes Químicos del Agua/aislamiento & purificación
14.
J Environ Sci (China) ; 25(3): 430-40, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23923414

RESUMEN

Algae-caused black bloom (also known as black water agglomerate) has recently become a critical problem in some Chinese lakes. It has been suggested that the occurrence of algae-caused black bloom was caused by the cooperation of nutrient-rich sediment with dead algae, and sludge dredging was adopted to control black bloom in some lakes of China. In this article, based on the simulation of black bloom using a Y-shape apparatus for modeling natural conditions, both un-dredged and dredged sites in three areas of Taihu-Lake, China were studied to estimate the effects of dredging on the prevention and control of black bloom. During the experiment, drained algae were added to all six sites as an additional organic load; subsequently, the dissolved oxygen decreased rapidly, dropping to 0 mg/L at the sediment-water interface. Black bloom did not occur in the dredged sites of Moon Bay and Nan Quan, whereas all three un-dredged sites at Fudu Port, Moon Bay and Nan Quan experienced black bloom. Black bloom also occurred at the dredged site of Fudu Port one day later than at the other sites, and the odor and color were lighter than at the other locations. The color and odor of the black water mainly result from the presence of sulfides such as metal sulfides and hydrogen sulfide, among other chemicals, under reductive conditions. The color and odor of the water, together with the high concentrations of nutrients, were mainly caused by the decomposition of the algae and the presence of nutrient-rich sediment. Overall, the removal of the nutrient-rich sediment by dredging can prevent the occurrence and control the degree of algae-caused black bloom in Taihu Lake.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Lagos/microbiología , Aguas del Alcantarillado/microbiología , China , Color , Geografía , Sedimentos Geológicos/química , Sulfuro de Hidrógeno/análisis , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Odorantes , Oxígeno/análisis , Fósforo/análisis , Solubilidad , Agua/química
15.
Water Res ; 47(13): 4247-58, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23764575

RESUMEN

Phosphorus from wastewaters and sediment flux to surface water represents a major source of lake eutrophication. Active filtration and in situ capping (which refers to placement of a covering or cap over an in-situ deposit of contaminated sediment) are widely used as a means to immobilize phosphorus from wastewaters and sediment, to mitigate lake eutrophication. There is, however, a need to develop more efficient means of immobilizing phosphorus through the development of binding agents. In this study, natural calcium-rich sepiolite (NCSP) was calcined at a range of temperatures, to enhance its phosphorus removal capacity. Batch studies showed that the 900 °C calcinated NCSP (NCSP900) exhibited excellent sorption performance, attaining a phosphorus removal efficiency of 80.0%-99.9% in the range of 0.05 mg/L-800 mg/L phosphorus concentrations with a dosage of 20 g/L. The material displayed rapid sorption rate (maximum amount of 99.9% of phosphate removal with 5 min) and could lower the very high phosphate concentration (200 mg/L) to less than 0.1 mg/L after 4 h adsorption. It was also noted that factors such as pH, competing anions (except [Formula: see text] ) and humic acid, had no effect on phosphorus removal capacity. The sediment immobilization experiment indicated that NCSP900 had the capacity to transform reactive phosphorus into inert-phosphorus and significantly reduce the amount of algal-bioavailable phosphorus. The excellent phosphorus binding performance of NCSP900 was mainly due to the improvement of point of zero charge (pHPZC) as well as the transformation of the inert-calcium of NCSP to active free CaO during calcination. Phosphorus speciation indicated that phosphorus was mainly captured by relatively stable calcium-bound phosphorus (Ca-P) precipitation, which can account for 80.1% of the total phosphorus. This study showed that NCSP900 could be used as an efficient binding agent for the sequestration of phosphorus from wastewaters and sediment.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Calcio/química , Sedimentos Geológicos/química , Silicatos de Magnesio/química , Fósforo/aislamiento & purificación , Aguas Residuales/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Minerales/química , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
16.
Huan Jing Ke Xue ; 33(10): 3368-75, 2012 Oct.
Artículo en Chino | MEDLINE | ID: mdl-23233961

RESUMEN

A simulated experiment was conducted to investigate the impacts of sediment dredging on sediment resuspension and phosphorus transfer in the summer and winter seasons under the common wind-wave disturbance, and the contaminated sediment used in this study was from Meiliang Bay, Taihu lake. The result showed that 20 cm dredging could effectively inhibit the sediment resuspension in study area, dredging in winter has a better effect than that in summer, and the higher values of the total suspended solid (TSS) in undredged and dredged water column during the process of wind wave disturbance were 7.0 and 2.2, 24.3 and 6.4 times higher than the initial value in summer and winter simulation respectively. The paired-samples t-test result demonstrated that total phosphorus (TP) and phosphate (PO4(3-)-P) loading positively correlated to TSS content in dredged (P<0.01) and undredged water column (P<0.05), which proved that internal phosphorus fulminating release induced by wind-wave disturbance would significantly increase the TP and PO4(3-)-P loading in the water column. The effect of dredging conducted in summer on the TP and PO4(3)-P loading in the water column was negative, but not for winter dredging (P<0.01). The pore water dissolved reactive phosphorus (DRP) profile at water-sediment interface in summer simulation was also investigated by diffusive gradients in thin films (DGT) technique. Diffusion layer of the DRP profile in undredged sediment was wider than that in dredged sediment. However, the DRP diffusion potential in dredged sediment was greater than that in undredged sediment, showing that dredging can effectively reduce the risk of the DRP potential release in dredged pore water, but also would induce the DRP fulminating release in the short time under hydrodynamic action. Generally, dredging was usually deployed during the summer and the autumn. Considering Taihu Lake is a large, shallow, eutrophic lake and the contaminant distribution is spatially heterogeneous, it is vital to determine the optimal time, depth and scope of dredging.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos/química , Fósforo/química , China , Simulación por Computador , Fósforo/análisis , Estaciones del Año
17.
Environ Sci Technol ; 45(22): 9680-6, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21988097

RESUMEN

Dissolved reactive phosphorus (DRP) is the most available P form in sediments and often directly controls phytoplankton blooms in aquatic systems. In this study, a novel procedure was developed for two-dimensional (2D) measurement of DRP in sediments at a spatial resolution of 0.45 mm using the diffusive gradients in thin films (DGT) technique with a revised high-capacity binding phase (Zr oxide gel). This procedure involves DGT uptake of P in sediments, 2D slicing of the binding gel on a 0.45 × 0.45-mm grid system, elution of P from each gel square with 1 M NaOH, and microcolorimetric determination of DRP in each eluted solution using 384-microwell plates. Measurements of DRP via this procedure were tested in homogeneous solutions and sediments and produced an acceptable error (<20% relative standard deviation) for the analysis once the accumulated mass of P in each gel square reached 1.2 µg cm(-2). This method was successfully applied to produce 2D images of the DRP distribution in sediments with and without the influence of tubificid worm bioturbation, revealing a much more pronounced and localized impact from tubificid worms than that found using a one-dimensional measurement of pore water DRP concentrations at 1-cm resolution.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Sedimentos Geológicos/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Difusión , Monitoreo del Ambiente/métodos , Geles/química , Sensibilidad y Especificidad , Circonio/química
18.
Huan Jing Ke Xue ; 32(5): 1299-305, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21780583

RESUMEN

Using water hyacinth and other fast-growing and high biomass of floating plants to purify polluted water has become an efficient and effective ecological restoration method at present. Effects of nutrients adsorption and water purification of planting water hyacinth on water quality in Zhushan Bay were studied. The results indicated that no anoxia was observed in water hyacinth planting areas because of wave disturbance and strong water exchange. Concentrations of TN and TP in water hyacinth planting areas were higher than that in the outside of stocking area (the content ranged 3.03-7.45 mg/L and 0.15-0.38 mg/L, respectively), and the content changes ranged 3.37-8.02 mg/L and 0.15-0.36 mg/L,respectively. The higher concentration of TN and TP in water indicated the water body was heavily polluted. Water hyacinth roots have a strong ability to adsorb suspended solids and algae cells, the concentration of Chl-a in stocking areas was higher than that in stocking fringe and outside, the maximum Chlorophyll in the stocking region in August was 177.01 mg/m3, and at the same time the concentrations in planting fringe and outside were 101.53 mg/m3 and 76.96 mg/m, respectively. Higher Chl-a content on water hyacinth roots indicated that water hyacinth had strong blocking effects on algae cells, and demonstrated it had a great purification effects on eutrophicated water, and it also provides a basis for the larger polluted water bodies purification in using water hyacinth.


Asunto(s)
Hyacinthus/metabolismo , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Biodegradación Ambiental , China , Agua Dulce/análisis , Hyacinthus/crecimiento & desarrollo , Nitrógeno/aislamiento & purificación , Nitrógeno/metabolismo , Fósforo/aislamiento & purificación , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo
19.
Huan Jing Ke Xue ; 32(1): 88-95, 2011 Jan.
Artículo en Chino | MEDLINE | ID: mdl-21404669

RESUMEN

To examine the impact of Corbicula fluminea on sediment properties and phosphorus dynamics across sediment-water interface in lake, the microcosm experiment was carried out with sediment and lake water from the estuary of Dapu River, a eutrophic area in Taihu Lake. Rhizon samplers were used to acquire pore water, and soluble reactive phosphorus (SRP) flux across sediment-water interface and sediment properties were determined. The activity of C. fluminea destroyed the initial sediment structure, mixed sediment in different depths, increased oxygen penetration depth, sediment water content, and total microbial activity in sediment. The downward movement of overlying water was enhanced by the activity of C. fluminea, which decreased Fe2+ in pore water by oxidation. The production of ferric iron oxyhydroxide adsorbed SRP from pore water and decreased SRP concentration in pore water, and this increased iron bound phosphorus in corresponding sediment. The emergence of C. fluminea accelerated SRP release from sediment to overlying water, and enhanced SRP flux increased with the rise of introduced C. fluminea density. Metabolization of C. fluminea might play an important role in accelerating SRP release.


Asunto(s)
Corbicula/fisiología , Sedimentos Geológicos/análisis , Fósforo/análisis , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Animales , Corbicula/metabolismo , Agua Dulce/análisis
20.
Huan Jing Ke Xue ; 32(1): 96-101, 2011 Jan.
Artículo en Chino | MEDLINE | ID: mdl-21404670

RESUMEN

The mechanisms of phosphorus (P) adsorption and immobility were investigated in laboratory experiments. The sediments and waters used were taken from an inner-city heavily polluted canal. Addition of KH2PO4 into the operated experimental units, with and without (i.e., static) intermittent sediment resuspension, were made similar to the external P input and carried out periodically. The results show that the amount of the accumulative P adsorption onto the sediments was up to 363.4 mg x kg(-1) under the conditions of sediment disturbance over a 39-day period, and it was evidently higher than that (213.2 mg x kg(-1)) under static conditions. Sequential fractionation indicated that most of the incorporated P was accounted for in the Fe/Al-P. There were over 61% in the case of intermittent sediment disturbance and up to 83% in the case of static conditions. Based on the bioavailability of Fe/Al-P, 40.6% of the incorporated P was accounted for in non-occluded Fe/Al-P of the sediments under intermittent sediment disturbance conditions. This value increased to 59.5% under static conditions. In addition, more than 23% of the incorporated P was accounted for in HCl-P of the sediments under intermittent sediment disturbance conditions, on the other hand, the concentration of HCl-P kept relatively constant under static conditions. After 39 d of P adsorption by the both sediments, the values of the maximum sorption capacity (S(max)) decreased,while zero equilibrium P concentration (EPC0) and P saturation P(%) increased. However, the extent of EPC0 and P% under intermittent sediment disturbance conditions was obviously lower than that under static conditions. It was hopefully suggested that intermittent sediment disturbance can not only accelerate the P adsorption but also enhance the P retention by sediments.


Asunto(s)
Sedimentos Geológicos/química , Fósforo/química , Contaminantes Químicos del Agua/análisis , Adsorción , China , Ciudades , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA