Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Theor Appl Genet ; 136(12): 256, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010528

RESUMEN

KEY MESSAGE: By integrating QTL fine mapping and transcriptomics, a candidate gene responsible for oil content in rapeseed was identified. The gene is anticipated to primarily function in photosynthesis and photosystem metabolism pathways. Brassica napus is one of the most important oil crops in the world, and enhancing seed oil content is an important goal in its genetic improvement. However, the underlying genetic basis for the important trait remains poorly understood in this crop. We previously identified a major locus, OILA5 responsible for seed oil content on chromosome A5 through genome-wide association study. To better understand the genetics of the QTL, we performed fine mapping of OILA5 with a double haploid population and a BC3F2 segregation population consisting of 6227 individuals. We narrowed down the QTL to an approximate 43 kb region with twelve annotated genes, flanked by markers ZDM389 and ZDM337. To unveil the potential candidate gene responsible for OILA5, we integrated fine mapping data with transcriptome profiling using high and low oil content near-isogenic lines. Among the candidate genes, BnaA05G0439400ZS was identified with high expression levels in both seed and silique tissues. This gene exhibited homology with AT3G09840 in Arabidopsis that was annotated as cell division cycle 48. We designed a site-specific marker based on resequencing data and confirmed its effectiveness in both natural and segregating populations. Our comprehensive results provide valuable genetic information not only enhancing our understanding of the genetic control of seed oil content but also novel germplasm for advancing high seed oil content breeding in B. napus and other oil crops.


Asunto(s)
Brassica napus , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Semillas/química , Aceites de Plantas/análisis
2.
Theor Appl Genet ; 136(9): 187, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572171

RESUMEN

KEY MESSAGE: Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.


Asunto(s)
Brassica napus , Brassica rapa , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Edición Génica , Fitomejoramiento , Ácidos Grasos/metabolismo , Ácidos Esteáricos/metabolismo , Aceites de Plantas , Brassica rapa/genética , Semillas/genética , Semillas/metabolismo
3.
New Phytol ; 226(4): 1055-1073, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32176333

RESUMEN

Plant oils are valuable commodities for food, feed, renewable industrial feedstocks and biofuels. To increase vegetable oil production, here we show that the nonspecific phospholipase C6 (NPC6) promotes seed oil production in the Brassicaceae seed oil species Arabidopsis, Camelina and oilseed rape. Overexpression of NPC6 increased seed oil content, seed weight and oil yield both in Arabidopsis and Camelina, whereas knockout of NPC6 decreased seed oil content and seed size. NPC6 is associated with the chloroplasts and microsomal membranes, and hydrolyzes phosphatidylcholine and galactolipids to produce diacylglycerol. Knockout and overexpression of NPC6 decreased and increased, respectively, the flux of fatty acids from phospholipids and galactolipids into triacylglycerol production. Candidate-gene association study in oilseed rape indicates that only BnNPC6.C01 of the four homeologues NPC6s is associated with seed oil content and yield. Haplotypic analysis indicates that the BnNPC6.C01 favorable haplotype can increase both seed oil content and seed yield. These results indicate that NPC6 promotes membrane glycerolipid turnover to accumulate TAG production in oil seeds and that NPC6 has a great application potential for oil yield improvement.


Asunto(s)
Brassicaceae , Brassicaceae/genética , Ácidos Grasos , Fosfolipasas , Aceites de Plantas , Plantas Modificadas Genéticamente , Semillas
4.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018533

RESUMEN

Vegetable oil is an essential constituent of the human diet and renewable raw material for industrial applications. Enhancing oil production by increasing seed oil content in oil crops is the most viable, environmentally friendly, and sustainable approach to meet the continuous demand for the supply of vegetable oil globally. An in-depth understanding of the gene networks involved in oil biosynthesis during seed development is a prerequisite for breeding high-oil-content varieties. Rapeseed (Brassica napus) is one of the most important oil crops cultivated on multiple continents, contributing more than 15% of the world's edible oil supply. To understand the phasic nature of oil biosynthesis and the dynamic regulation of key pathways for effective oil accumulation in B. napus, comparative transcriptomic profiling was performed with developing seeds and silique wall (SW) tissues of two contrasting inbred lines with ~13% difference in seed oil content. Differentially expressed genes (DEGs) between high- and low-oil content lines were identified across six key developmental stages, and gene enrichment analysis revealed that genes related to photosynthesis, metabolism, carbohydrates, lipids, phytohormones, transporters, and triacylglycerol and fatty acid synthesis tended to be upregulated in the high-oil-content line. Differentially regulated DEG patterns were revealed for the control of metabolite and photosynthate production in SW and oil biosynthesis and accumulation in seeds. Quantitative assays of carbohydrates and hormones during seed development together with gene expression profiling of relevant pathways revealed their fundamental effects on effective oil accumulation. Our results thus provide insights into the molecular basis of high seed oil content (SOC) and a new direction for developing high-SOC rapeseed and other oil crops.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Aceites de Plantas/metabolismo , Semillas/genética , Transcriptoma , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Redes y Vías Metabólicas , Semillas/metabolismo
5.
Theor Appl Genet ; 129(6): 1203-15, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26912143

RESUMEN

KEY MESSAGE: A set of additive loci for seed oil content were identified using association mapping and one of the novel loci on the chromosome A5 was validated by linkage mapping. Increasing seed oil content is one of the most important goals in the breeding of oilseed crops including Brassica napus, yet the genetic basis for variations in this important trait remains unclear. By genome-wide association study of seed oil content using 521 B. napus accessions genotyped with the Brassica 60K SNP array, we identified 50 loci significantly associated with seed oil content using three statistical models, the general linear model, the mixed linear model and the Anderson-Darling test. Together, the identified loci could explain approximately 80 % of the total phenotypic variance, and 29 of these loci have not been reported previously. Furthermore, a novel locus on the chromosome A5 that could increase 1.5-1.7 % of seed oil content was validated in an independent bi-parental linkage population. Haplotype analysis showed that the favorable alleles for seed oil content exhibit cumulative effects. Our results thus provide valuable information for understanding the genetic control of seed oil content in B. napus and may facilitate marker-based breeding for a higher seed oil content in this important oil crop.


Asunto(s)
Brassica napus/genética , Aceites de Plantas/análisis , Sitios de Carácter Cuantitativo , Semillas/química , Brassica napus/química , Mapeo Cromosómico , Cromosomas de las Plantas , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Haplotipos , Modelos Estadísticos , Fitomejoramiento , Polimorfismo de Nucleótido Simple
6.
Plant Physiol ; 162(1): 39-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23542150

RESUMEN

The release of fatty acids from membrane lipids has been implicated in various metabolic and physiological processes, but in many cases, the enzymes involved and their functions in plants remain unclear. Patatin-related phospholipase As (pPLAs) constitute a major family of acyl-hydrolyzing enzymes in plants. Here, we show that pPLAIIIδ promotes the production of triacylglycerols with 20- and 22-carbon fatty acids in Arabidopsis (Arabidopsis thaliana). Of the four pPLAIIIs (α, ß, γ, δ), only pPLAIIIδ gene knockout results in a decrease in seed oil content, and pPLAIIIδ is most highly expressed in developing embryos. The overexpression of pPLAIIIδ increases the content of triacylglycerol and 20- and 22-carbon fatty acids in seeds with a corresponding decrease in 18-carbon fatty acids. Several genes in the glycerolipid biosynthetic pathways are up-regulated in pPLAIIIδ-overexpressing siliques. pPLAIIIδ hydrolyzes phosphatidylcholine and also acyl-coenzyme A to release fatty acids. pPLAIIIδ-overexpressing plants have a lower level, whereas pPLAIIIδ knockout plants have a higher level, of acyl-coenzyme A than the wild type. Whereas seed yield decreases in transgenic plants that ubiquitously overexpress pPLAIIIδ, seed-specific overexpression of pPLAIIIδ increases seed oil content without any detrimental effect on overall seed yield. These results indicate that pPLAIIIδ-mediated phospholipid turnover plays a role in fatty acid remodeling and glycerolipid production.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácidos Grasos/metabolismo , Fosfolipasas A/metabolismo , Fosfolípidos/metabolismo , Aceites de Plantas/metabolismo , Semillas/enzimología , Acilcoenzima A/análisis , Acilcoenzima A/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Ácidos Grasos/análisis , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación , Especificidad de Órganos , Fosfatidilcolinas/metabolismo , Fosfolipasas A/genética , Fosfolipasas A/aislamiento & purificación , Aceites de Plantas/análisis , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN de Planta/genética , Semillas/citología , Semillas/genética , Triglicéridos/análisis , Triglicéridos/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA