Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279233

RESUMEN

Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.


Asunto(s)
Microbioma Gastrointestinal , Porcinos , Animales , Microbioma Gastrointestinal/fisiología , Ecosistema , Dieta , Bacterias , Aminoácidos , Alimentación Animal/análisis , Suplementos Dietéticos
2.
Int J Biol Macromol ; 195: 506-514, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34920071

RESUMEN

Antimicrobial resistance is one of the greatest global threats. Particularly, multidrug resistant extended-spectrum ß-lactamase (ESBL)-producing pathogens confer resistance to many commonly used medically important antibiotics, especially beta-lactam antibiotics. Here, we developed an innovative combination approach to therapy for multidrug resistant pathogens by encapsulating cephalosporin antibiotics and ß-lactamase inhibitors with chitosan nanoparticles (CNAIs). The four combinations of CNAIs including two cephalosporin antibiotics (cefotaxime and ceftiofur) with two ß-lactamase inhibitors (tazobactam and clavulanate) were engineered as water-oil-water emulsions. Four combinations of CNAIs showed efficient antimicrobial activity against multidrug resistant ESBL-producing Enterobacteriaceae. The CNAIs showed enhanced antimicrobial activity compared to naïve chitosan nanoparticles and to the combination of cephalosporin antibiotics and ß-lactamase inhibitors. Furthermore, CNAIs attached on the bacterial surface changed the permeability to the outer membrane, resulting in cell damage that leads to cell death. Taken together, CNAIs have provided promising potential for treatment of diseases caused by critically important ESBL-producing multidrug resistant pathogens.


Asunto(s)
Antibacterianos/administración & dosificación , Quitosano/química , Portadores de Fármacos/química , Nanopartículas/química , Inhibidores de beta-Lactamasas/administración & dosificación , Antibacterianos/farmacología , Cefalosporinas/farmacología , Fenómenos Químicos , Combinación de Medicamentos , Emulsiones , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología
3.
J Agric Food Chem ; 66(20): 5157-5166, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29683328

RESUMEN

Clostridium butyricum is known as a butyrate producer and a regulator of gut health, but whether it exerts a beneficial effect as a dietary supplement via modulating the intestinal microbiota remains elusive. This study investigated the impact of C. butyricum on the fecal microbiota composition and their metabolites 14 and 28 days after weaning with 10 g/kg dietary supplementation of C. butyricum. Dynamic changes of microbial compositions showed dramatically increasing Selenomonadales and decreasing Clostridiales on days 14 and 28. Within Selenomonadales, Megasphaera became the main responder by increasing from 3.79 to 11.31%. Following the prevalence of some acetate producers ( Magasphaera) and utilizers ( Eubacterium_hallii) at the genus level and even with a significant decrease in fecal acetate on day 28, the present data suggested that C. butyricum influenced microbial metabolism by optimizing the structure of microbiota and enhancing acetate production and utilization for butyrate production.


Asunto(s)
Ácido Acético/metabolismo , Bacterias/metabolismo , Clostridium butyricum/fisiología , Heces/microbiología , Microbioma Gastrointestinal , Probióticos/administración & dosificación , Porcinos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Butiratos/metabolismo , Suplementos Dietéticos/análisis , Femenino , Masculino , Porcinos/crecimiento & desarrollo , Porcinos/metabolismo , Destete
4.
Protein Pept Lett ; 24(5): 449-455, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28240159

RESUMEN

This study was conducted to evaluate the effect of flavors on reproductive performance of sows and we also studied its effect on gut barrier function. Forty-eight Landrace × Yarkshire sows were randomly allotted and fed a basal diet added 0%, 0.05% or 0.10% flavor feed, respectively from parturition to day 28 of weaning. The results showed that supplementation of 0.05% or 0.10% flavors increased average daily feed intake (ADFI) of sows and average daily gain (ADG) of piglets, decreased the weight losses of sows, increased the survival ratio of weaning piglets (P < 0.05), especially shorten the post-weaning estrus interval significantly (P < 0.05). Supplementation of flavor additives tend to reduce the weight losses of sows and raise the survival ratio of piglet weaned (P > 0.05). Moreover, addition of flavors in diets reduced the intestinal permeability and enhanced digestibility of dry matter, crude protein, and energy (P < 0.05). Flavors supplementation significantly increased the level of gonadotropin releasing hormne (GnRH) of serum in sows after weaning. In conclusion, the results suggested that supplementation of dietary flavors could improve digestibility of nutrients and the reproductive performance of sows as well as the gut barrier function.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Lactancia/fisiología , Modelos Biológicos , Reproducción/fisiología , Animales , Animales Lactantes , Femenino , Absorción Gastrointestinal/fisiología , Hormona Liberadora de Gonadotropina/sangre , Sus scrofa , Porcinos , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA