Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Int Med Res ; 51(10): 3000605231203841, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37848344

RESUMEN

OBJECTIVE: We performed a meta-analysis to determine whether the addition of probiotics to the bismuth quadruple therapy (BQT) for Helicobacter pylori would improve the incidence of eradication and reduce that of side effects. METHODS: Randomized controlled trials matching the inclusion criteria were collected from PubMed, Embase, Web of Science, and The Cochrane Central Register of Controlled Trials. A Mantel-Haenszel random-effects model was used to calculate pooled risk ratios (RRs) and 95% confidence intervals (CIs) for the incidences of eradication rate, side effects as a whole, diarrhea, and other side effects. RESULTS: Ten studies were selected for inclusion in the meta-analysis. The pooled RRs for the eradication rates in intention-to-treat and per-protocol analyses of the probiotic group vs. the control group were 1.07 (95% CI: 1.02-1.11) and 1.04 (95% CI: 1.00-1.07), respectively. Probiotic supplementation reduced the incidences of side effects (RR 0.58, 95% CI: 0.37-0.91), diarrhea (RR 0.41, 95% CI: 0.25-0.67), and bitter taste (RR 0.63, 95% CI: 0.40-0.99). CONCLUSIONS: The results of this meta-analysis support the use of probiotics in combination with BQT in the clinical management of patients with H. pylori infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Probióticos , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Bismuto/efectos adversos , Antibacterianos/uso terapéutico , Quimioterapia Combinada , Suplementos Dietéticos , Probióticos/efectos adversos , Diarrea , Resultado del Tratamiento
2.
Nat Commun ; 14(1): 2950, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221157

RESUMEN

The immunologically "cold" microenvironment of triple negative breast cancer results in resistance to current immunotherapy. Here, we reveal the immunoadjuvant property of gas therapy with cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation to augment aggregation-induced emission (AIE)-active luminogen (AIEgen)-based photoimmunotherapy. A virus-mimicking hollow mesoporous tetrasulfide-doped organosilica is developed for co-encapsulation of AIEgen and manganese carbonyl to fabricate gas nanoadjuvant. As tetra-sulfide bonds are responsive to intratumoral glutathione, the gas nanoadjuvant achieves tumor-specific drug release, promotes photodynamic therapy, and produces hydrogen sulfide (H2S). Upon near-infrared laser irradiation, the AIEgen-mediated phototherapy triggers the burst of carbon monoxide (CO)/Mn2+. Both H2S and CO can destroy mitochondrial integrity to induce leakage of mitochondrial DNA into the cytoplasm, serving as gas immunoadjuvants to activate cGAS-STING pathway. Meanwhile, Mn2+ can sensitize cGAS to augment STING-mediated type I interferon production. Consequently, the gas nanoadjuvant potentiates photoimmunotherapy of poorly immunogenic breast tumors in female mice.


Asunto(s)
Neoplasias de la Mama , Inmunoterapia , Fotoquimioterapia , Animales , Femenino , Ratones , Adyuvantes Inmunológicos , Luz , Nucleotidiltransferasas , Fototerapia , Neoplasias de la Mama/terapia
3.
Artículo en Inglés | MEDLINE | ID: mdl-35619665

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the second most common malignancy globally, after lung cancer, accounting for 85-90% of primary liver cancer. Hepatitis B virus (HBV) infection is considered the leading risk factor for HCC development in China. HCC is a highly malignant cancer whose metastasis is primarily influenced by the tumor microenvironment. The role of exosomes in cancer development has become the focus of much research due to the many newly described contents of exosomes, which may contribute to tumorigenesis. However, the possible role exosomes play in the interactions between HCC cells and their surrounding hepatic milieu is mainly unknown. We discovered an Improved Aitongxiao Prescription (I-ATXP): an 80% alcohol extract from a mix of 15 specific plant and animal compounds, which had been shown to have an anticancer effect through inducing apoptosis and cell cycle arrest and blocking exosomes release in HCC cells. However, the anticancer mechanism of I-ATXP on human liver carcinoma is still unclear. OBJECTIVE: Due to its inhibitory effects on chemical carcinogenesis and inflammation, I-ATXP has been proposed as an effective agent for preventing or treating human liver carcinoma. In this study, we aimed to explore the effect of I-ATXP on proliferation, apoptosis, and cell cycles of different HCC cell lines. We investigated the impact of I-ATXP on exosomes' secretion derived from these HCC cells. METHODS: The inhibitory effect of I-ATXP on proliferation and cytotoxicity of HepG2, SMMC7721, HKCL-C3 HCC cell lines, and MIHA immortalized hepatocyte cell line was assessed by CCK-8 assay. The cell cycle distribution and cell apoptosis were determined by flow cytometry using Annexin V-FITC/PI staining. The expression of Alix and CD63 of exosome marker proteins was detected by western blotting. The exosome protein concentration was measured by a fluorescent plate reader. The exosome-specific enzyme activity was measured by acetylcholinesterase (AchE) assay, and exosome morphological characteristics were identified by transmission electron microscopy (TEM). RESULTS: I-ATXP inhibited the growth of HCC cells in a dose and time-dependent manner. Flow cytometry analysis showed that I-ATXP induced G0/G1 phase arrest and cell apoptosis. The I-ATX reduced HepG2, SMMC7721, and HKCI-C HCC cell lines exosomes release and low-dose I-ATXP significantly enhanced the growth inhibition induced by 5-Fu. Western blot analysis shows that after HCC cell lines were treated with various concentrations of I-ATXP (0.125-1 mg/ml) for 24 h, exosomes derived from three different HCC cells expressed exosome-specific proteins Alix and CD63. Compared with the untreated group, with the increment of the concentration of I-ATXP, the expression of exosome-specific proteins Alix and CD63 were reduced. These results suggest that I-ATXP can inhibit the release of exosomes with Alix and CD63 protein from HCC cells. CONCLUSIONS: I-ATXP is a traditional Chinese medicine that acts as an effective agent for preventing or treating human liver carcinoma. (i) I-ATXP can effectively inhibit cell proliferation of different HCC cells in a time and dose-dependent manner. Compared with 5-Fu, I-ATXP exhibited more selective proliferation inhibition in HCC cells, displaying traditional Chinese medicine advantages on tumor therapy and providing the experimental basis for I-ATXP clinical application. (ii) I-ATXP can induce apoptosis and cell cycle arrest in HCC cells. The CCK-8 assay results indicated that I-ATXP could inhibit HCC cell proliferation mediated by apoptosis and cell cycle arrest. (iii) I-ATXP can inhibit both the exosome releases and expression of CD63, and Alix derived from HCC cells, but the exosomes derived from liver cancer cells affect liver cancer cells' biological properties such as proliferation, invasion, and migration. These suggest that I-ATXP may affect HCC cells via regulation of exosomes of HCC cells, further indicating the potential clinical values of I-ATXP for the prevention or treatment of human liver carcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA