Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(49): 20773-20780, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906162

RESUMEN

Iodine is a crucial nutrient for public health, and its presence in the terrestrial atmosphere is a key factor in determining the prevalence of iodine deficiency disorders. While oceanic iodine emissions decrease at lower sea surface temperatures, the primary contributors to atmospheric iodine can vary from oceanic sources in the summer to other sources in winter. However, the specific sources and their respective contributions have remained unexplored. Fortunately, the atomic ratio of 129I to 127I significantly differs between nuclear activity and fossil fuels like coal and petroleum, which formed millions to billions of years ago. This distinction makes 129I a valuable tool for identifying iodine sources. In our study, we analyzed iodine isotopes and incorporated additional indicators such as element content in PM2.5 samples. Our findings reveal, for the first time, that in winter inland areas, fuel oil, alongside coal combustion, is a significant source of atmospheric iodine. This research enhances our comprehension of the impact of human activities on iodine levels in the environment. This understanding is crucial not only for addressing iodine deficiency-related health concerns but also for comprehending stratospheric ozone depletion, a phenomenon closely associated with atmospheric iodine.


Asunto(s)
Contaminantes Atmosféricos , Yodo , Petróleo , Humanos , Combustibles Fósiles/análisis , Contaminantes Atmosféricos/análisis , Carbón Mineral , Monitoreo del Ambiente
2.
Plant Physiol ; 192(2): 1099-1114, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36932694

RESUMEN

Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the phosphorus (P) response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of 6 LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7, and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.


Asunto(s)
Glycine max , Factores de Transcripción , Glycine max/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fósforo/metabolismo , Genotipo , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
3.
Plant Sci ; 320: 111283, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643608

RESUMEN

Purple acid phosphatase (PAP) is an important plant acid phosphatase, which can secrete to the rhizosphere to decompose organophosphorus, promote phosphorus use efficiency, plant growth and development. However, little is known about the functions of intracellular PAP in plants, especially for soybean. Our previous study integrating QTL mapping and transcriptome analysis identified an promising low phosphorus (LP)-induced gene GmPAP17. Here, we determined that GmPAP17 was mainly expressed in roots and had a strong response to LP stress. Furthermore, and the relative expression in the root of LP tolerant genotypes NN94-156 was significantly greater than that of LP sensitive genotype Bogao after LP stress treatment. The overexpression of GmPAP17 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under LP stress condition, it was vice versa for RNAi interference of GmPAP17, indicating that GmPAP17 plays an important role in P use efficiency. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analysis showed that GmRAP2.2 was involved in the regulation network of GmPAP17. Taken together, our results suggest that GmPAP17 is a novel plant PAP that functions in the adaptation of soybean to LP stress, possibly through its involvement in P recycling in plants.


Asunto(s)
Glycine max , Fósforo , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Mapeo Cromosómico , Fósforo/metabolismo , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA