Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Res Int ; 165: 112522, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869522

RESUMEN

Oolong tea is one of the most popular tea beverages in China. Tea cultivars, processing technology and origin of production affect the quality and price of oolong teas. To investigate the differences in Huangguanyin oolong tea from different production regions, the chemical components, mineral elements and rare earth elements of Huangguanyin oolong tea produced in Yunxiao (YX) and Wuyishan (WY) were analyzed by using spectrophotometry methods, targeted metabolomics and inductive plasma coupled mass spectrometry (ICP-MS). The results of spectrophotometry methods revealed that there were significant differences in thearubigin, tea polyphenols and water extract between Huangguanyin oolong teas from different production regions. Targeted metabolomics identified a total of 31 chemical components in Huangguanyin oolong teas from the two production regions, of which 14 chemical components were significantly different and contributed to the regional differentiation of Huangguanyin oolong tea. Yunxiao Huangguanyin had relatively higher contents of (-)-Epigallocatechin-3-O-(3-O-methylgallate) (EGCG3″Me), ornithine (Orn) and histidine (His), while Wuyishan Huangguanyin had relatively higher contents of glutamic acid (Glu), γ-aminobutyric acid (GABA), ß-aminobutyric acid (ß-ABA) and other components. Moreover, ICP-MS identified a total of 15 mineral elements and 15 rare earth elements in Huangguanyin oolong tea from the two production regions, of which 15 elements were significantly different between YX and WY, and contributed to the regional differentiation of Huangguanyin oolong tea. K had a relatively higher content in Yunxiao Huangguanyin, while rare earth elements had relatively higher contents in Wuyishan Huangguanyin. The classification results by the production region showed that the discrimination rate of the support vector machine (SVM) model based on the 14 different chemical components reached 88.89%, while the SVM model based on the 15 elements reached 100%. Therefore, we used targeted metabolomics and ICP-MS techniques to screen and explore the chemical components, mineral elements and rare earth elements differences among two production regions, which indicated the feasibility of Huangguanyin oolong tea classification by production regions in the study. The results will provide some reference for the distinction between the two production regions of Huangguanyin oolong tea.


Asunto(s)
Bebidas , Metales de Tierras Raras , China , Ácido Gálico , Ácido Glutámico ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA