Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771069

RESUMEN

Phaseolus angularis L. is widely cultivated and is considered a superfood because of its nutritious protein and starch contents. Nevertheless, P. angularis's effects on skin photoaging are unknown. The aim of this study was to research the effects of P. angularis seed extract (PASE) on photoaging in human keratinocytes (HaCaT) damaged by UVB radiation so as to find out whether PASE can be used as an effective anti-photoaging ingredient in cosmetic products. The antioxidant activities were assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging, and reactive oxygen species (ROS) assays. Enzyme-linked immunosorbent assay (ELISA) analysis was used to determine the change in matrix metalloproteinase (MMP)-1, and MMP-3. The protein levels of mitogen-activated protein kinase (MAPK)/activator protein (AP)-1, transforming growth factor beta (TGF)-ß/suppressor of mothers against decapentaplegic (Smad), and NF-E2-related factor (Nrf)2/antioxidant response element (ARE) were measured by western blot. As a result, PASE increased DPPH and ABTS antioxidant activities in a dose-dependent manner. Additionally, PASE treatment (100 µg/mL) significantly reverted the damage induced by UVB (125 mJ/cm2) irradiation by downregulating ROS, matrix metalloproteinase (MMP)-1, and MMP-3 secretion and expression and increasing procollagen type I production. To suppress MMP-1 and MMP-3 secretion, PASE significantly decreased UVB-induced p38 and JNK phosphorylation and phosphorylated c-Fos and c-Jun nuclear translocation. PASE promoted collagen I production by inhibiting UVB-induced TGF-ß activation and Smad7 overexpression; antioxidant properties also arose from the stimulation of the Nrf2-dependent expression of the antioxidant enzymes heme oxygenase (HO)-1 and quinone oxidoreductase (NQO)-1. Our data demonstrated that PASE has the potential to prevent ROS formation induced by UVB exposure by targeting specific pathways. Thus, PASE might be a potent anti-photoaging component to exploit in developing anti-aging products.


Asunto(s)
Phaseolus , Envejecimiento de la Piel , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Phaseolus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Queratinocitos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/química , Rayos Ultravioleta/efectos adversos , Fibroblastos
2.
Photochem Photobiol Sci ; 21(12): 2217-2230, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36103110

RESUMEN

Rosa davurica is widely used to treat various kinds of diseases because of its high antioxidant, antiviral and anti-inflammatory activities. This use of plant-based materials as medicine is called phytomedicine and has been widely practiced since time immemorial. However, the pharmacological mechanism of R. davurica in skin photoaging is not yet fully understood. Therefore, this study was carried out to evaluate the recovery effects of R. davurica leaf extracts (RDE) in UVB-irradiated human skin keratinocytes (HaCaTs) and investigate whether RDE is a potential therapeutic agent against skin photoaging. The expression of aging-related markers including mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1), nuclear factor-κB (NF-κB), and nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) was evaluated using Western blot analysis. The reactive oxygen species (ROS) was also used by FACS in HaCaTs. Findings indicated that RDE is efficient in scavenging free radicals and dose-dependently reducing ROS generation. Furthermore, RDE notably decreased UVB-induced matrix metalloproteinase-1 (MMP-1) expression through inhibition of MAPK/AP-1 and NF-κB signaling pathways as well as induced blocking of extracellular matrix (ECM) degradation in UVB-irradiated HaCaTs. In addition, RDE improved Nrf2/HO-1 signaling that increases oxidative defense capacity and enhances transforming growth factor-beta (TGF-ß) signaling activation to promote procollagen type I synthesis, relieving UVB-induced skin cell damage. In conclusion, the protective effects of RDE on skin cellular components suggest that it has a high biological potential for skin protection from UVB-induced skin photoaging and is a good candidate for drug and cosmetic application.


Asunto(s)
Extractos Vegetales , Rosa , Envejecimiento de la Piel , Humanos , Hemo-Oxigenasa 1 , Proteínas Quinasas Activadas por Mitógenos , Factor 2 Relacionado con NF-E2 , FN-kappa B , Rosa/química , Factor de Transcripción AP-1 , Envejecimiento de la Piel/efectos de los fármacos , Células HaCaT , Extractos Vegetales/farmacología , Rayos Ultravioleta
3.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073317

RESUMEN

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


Asunto(s)
Queratinocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factores de Transcripción NFATC/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Compuestos de Bifenilo/química , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Evaluación Preclínica de Medicamentos , Frutas/metabolismo , Glucosa/metabolismo , Humanos , Inflamación/metabolismo , Queratinocitos/citología , Sistema de Señalización de MAP Quinasas , Myrtaceae , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Picratos/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
4.
Molecules ; 26(4)2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33562140

RESUMEN

Crataegus laevigata belongs to the family Rosaceae, which has been widely investigated for pharmacological effects on the circulatory and digestive systems. However, there is limited understanding about its anti-oxidative stress and anti-inflammatory effects on skin. In this study, 70% ethanol C. laevigata berry extract (CLE) was investigated on lipopolysaccharide (LPS)-stimulated keratinocytes. The LPS-induced overproduction of reactive oxygen species (ROS) was suppressed by the treatment with CLE. In response to ROS induction, the overexpression of inflammatory regulating signaling molecules including mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), and nuclear factor of activated T-cells (NFAT) were reduced in CLE-treated human keratinocytes. Consequently, CLE significantly suppressed the mRNA levels of pro-inflammatory chemokines and interleukins in LPS-stimulated cells. Our results indicated that CLE has protective effects against LPS-induced injury in an in vitro model and is a potential alternative agent for inflammatory treatment.


Asunto(s)
Crataegus/química , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Supervivencia Celular/efectos de los fármacos , Quimiocinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , Queratinocitos/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , ARN Mensajero/genética , Factor de Transcripción AP-1/metabolismo
5.
Appl Biochem Biotechnol ; 184(4): 1073-1093, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28948464

RESUMEN

Radix Scutellariae (RS) has long been used in the treatment of inflammatory and allergic diseases. Its main flavonoids, baicalin (BG) and wogonoside (WG), can be hydrolyzed into their corresponding aglycones, baicalein (B) and wogonin (W). In this study, we developed a safe and effective method of transforming these glycosides using Peclyve PR. The transformation rate of BG and WG reached 98.5 and 98.1%, respectively, with 10% enzyme at 40 °C for 60 h. Furthermore, we compared the anti-photoaging activity of RS before and after enzyme treatment, as well as their respective main components, in UVB-irradiated HaCaT cells. Results found that enzyme-treated RS (ERS) appeared to be much better at preventing UVB-induced photoaging than RS. ERS significantly inhibited the upregulation of matrix metalloproteinase-1 and IL-6 caused by UVB radiation by inactivating the MAPK/AP-1 and NF-κB/IκB-α signaling pathways. ERS treatment also recovered UVB-induced reduction of procollagen type I by activating the TGF-ß/Smad pathway. In addition, ERS exhibited an excellent antioxidant activity, which could increase the expression of cytoprotective antioxidants such as HO-1 and NQ-O1, by facilitating Nrf2 nuclear transfer. These findings demonstrated that the photoprotective effects of RS were significantly improved by enzyme-modified biotransformation.


Asunto(s)
Antioxidantes/farmacología , Queratinocitos/metabolismo , Lamiaceae/química , Extractos Vegetales/farmacología , Protectores Solares/farmacología , Rayos Ultravioleta/efectos adversos , Antioxidantes/química , Línea Celular , Humanos , Queratinocitos/patología , Extractos Vegetales/química , Protectores Solares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA