Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 923: 171501, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447724

RESUMEN

Understanding how nutrient addition affects the tree growth is critical for assessing forest ecosystem function and processes, especially in the context of increased nitrogen (N) and phosphorus (P) deposition. Subtropical forests are often considered N-rich and P-poor ecosystems, but few existing studies follow the traditional "P limitation" paradigm, possibly due to differences in nutrient requirements among trees of different size classes. We conducted a three-year fertilization experiment with four treatments (Control, N-treatment, P-treatment, and NP-treatment). We measured soil nutrient availability, leaf stoichiometry, and relative growth rate (RGR) of trees across three size classes (small, medium and large) in 64 plots. We found that N and NP-treatments increased the RGR of large trees. P-treatment increased the RGR of small trees. RGR was mainly affected by N addition, the total effect of P addition was only 10 % of that of N addition. The effect of nutrient addition on RGR was mainly regulated by leaf stoichiometry. This study reveals that nutrient limitation is size dependent, indicating that continuous unbalanced N and P deposition will inhibit the growth of small trees and increase the instability of subtropical forest stand structure, but may improve the carbon sink function of large trees.


Asunto(s)
Ecosistema , Árboles , Bosques , Nitrógeno/análisis , Fósforo/química , Suelo/química
2.
Sci Total Environ ; 852: 158230, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007640

RESUMEN

Forest productivity is generally limited by nutrient scarcity. This study aims to reveal seasonal interactions among leaf carbon (C), nitrogen (N) fractions and tree growth driven by nutrient addition in a subtropical forest. Here, a field nutrient addition experiment was conducted with six treatments, namely, +N5 (5 g N m-2 yr-1), +N10 (10 g N m-2 yr-1), +P5 (5 g P m-2 yr-1), +N5 + P5, +N10 + P5, and control (N0 + P0). C fractions (structural and non-structural carbohydrates) and N fractions (soluble N, nucleic N and protein N) in needles as well as tree growth indicated by basal area increment (BAI) were measured in growing and dormant seasons. Total N and protein N in old needles were significantly increased by P addition, while no significant differences of non-structural carbohydrates in young (<1-year old) and old needles (>1-year old) were detected among the treatments in both seasons. N and P addition increased the structural carbohydrates of old needles in dormant season. P addition decreased and increased tree growth in growing and dormant seasons, respectively. The variation of BAI was explained 18.3 % by total N and 17.8 % by protein N in growing season, and was explained 33.9 % by total N and 34.2 % by protein N in dormant season. Our study suggested that the P addition effect on Chinese fir growth mostly depends on needle N fractions. This study highlights tree seasonal growth driven by nutrient alteration might be characterized by leaf N fractions rather than C fractions in subtropical forests.


Asunto(s)
Cunninghamia , Nitrógeno/análisis , Fósforo/metabolismo , Estaciones del Año , Bosques , Árboles/metabolismo , Carbono , Carbohidratos , Suelo/química
3.
PLoS One ; 13(7): e0199625, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995910

RESUMEN

Phosphate-solubilizing fungi (PSF) generally enhance available phosphorus (P) released from soil, which contributes to plants' P requirement, especially in P-limiting regions. In this study, two PSF, TalA-JX04 and AspN-JX16, were isolated from the rhizosphere soil of moso bamboo (Phyllostachys edulis) widely distributed in P-deficient areas in China and identified as Talaromyces aurantiacus and Aspergillus neoniger, respectively. The two PSF were cultured in potato dextrose liquid medium with six types of initial pH values ranging from 6.5 to 1.5 to assess acid resistance. Both PSF were incubated in Pikovskaya's liquid media with different pH values containing five recalcitrant P sources, including Ca3(PO4)2, FePO4, CaHPO4, AlPO4, and C6H6Ca6O24P6, to estimate their P-solubilizing capacity. No significant differences were found in the biomass of both fungi grown in media with different initial pH, indicating that these fungi could grow well under acid stress. The P-solubilizing capacity of TalA-JX04 was highest in medium containing CaHPO4, followed by Ca3(PO4)2, FePO4, C6H6Ca6O24P6, and AlPO4 in six types of initial pH treatments, while the recalcitrant P-solubilizing capacity of AspN-JX16 varied with initial pH. Meanwhile, the P-solubilizing capacity of AspN-JX16 was much higher than TalA-JX04. The pH of fermentation broth was negatively correlated with P-solubilizing capacity (p<0.01), suggesting that the fungi promote the dissolution of P sources by secreting organic acids. Our results showed that TalA-JX04 and AspN-JX16 could survive in acidic environments and both fungi had a considerable ability to release soluble P by decomposing recalcitrant P-bearing compounds. The two fungi had potential for application as environment-friendly biofertilizers in subtropical bamboo ecosystem.


Asunto(s)
Hongos/metabolismo , Concentración de Iones de Hidrógeno , Fosfatos/metabolismo , Fósforo/metabolismo , Rizosfera , Sasa/microbiología , Microbiología del Suelo , Análisis de Varianza , Biomasa , Hongos/aislamiento & purificación , Micelio , Fenotipo
4.
PLoS One ; 12(10): e0186905, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073278

RESUMEN

Stand density regulation is an important measure of plantation forest management, and phosphorus (P) is often the limiting factor of tree productivity, especially in the subtropics and tropics. However, the stand density influence on ecosystem P cycling is unclear in Chinese fir (Cunninghamia lanceolata) plantations of subtropical China. We collected rhizosphere and bulk soils, leaves and twigs with different ages and roots with different orders to measure P and nitrogen (N) variables in Chinese fir plantations with low density (LDCF) and high density (HDCF) at Fujian and Hunan provinces of subtropical China. Rhizosphere soil labile P, slow P, occluded P and extractable P were higher in LDCF than HDCF at two sites. Meanwhile, P and N concentrations of 1-year-old leaves and twigs were higher in LDCF than HDCF and leaf N/P ratio generally increased with increasing leaf age at two sites. Rhizosphere vs. bulk soil labile P and occluded P were greater in LDCF than HDCF at Fujian. Nitrogen resorption efficiencies (NRE) of leaves and twigs were higher in LDCF than HDCF at Fujian, while their P resorption efficiencies (PRE) were not different between two densities at two sites. The average NRE of leaves (41.7%) and twigs (65.6%) were lower than the corresponding PRE (67.8% and 78.0%, respectively). Our results suggest that reducing stem density in Chinese fir plantations might be helpful to increase soil active P supplies and meet tree nutrient requirements.


Asunto(s)
Cunninghamia/química , Bosques , Fósforo/análisis , Suelo/química , Clima Tropical , China , Nitrógeno/análisis , Células Vegetales
5.
Tree Physiol ; 35(10): 1106-17, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26358049

RESUMEN

It is unclear how or even if phosphorus (P) input alters the influence of nitrogen (N) deposition in a forest. In theory, nutrients in leaves and twigs differing in age may show different responses to elevated nutrient input. To test this possibility, we selected Chinese fir (Cunninghamia lanceolata) for a series of N and P addition experiments using treatments of +N1 - P (50 kg N ha(-1) year(-1)), +N2 - P (100 kg N ha(-1) year(-1)), -N + P (50 kg P ha(-1) year(-1)), +N1 + P, +N2 + P and -N - P (without N and P addition). Soil samples were analyzed for mineral N and available P concentrations. Leaves and twigs in summer and their litters in winter were classified as and sorted into young and old components to measure N and P concentrations. Soil mineral N and available P increased with N and P additions, respectively. Nitrogen addition increased leaf and twig N concentrations in the second year, but not in the first year; P addition increased leaf and twig P concentrations in both years and enhanced young but not old leaf and twig N accumulations. Nitrogen and P resorption proficiencies in litters increased in response to N and P additions, but N and P resorption efficiencies were not significantly altered. Nitrogen resorption efficiency was generally higher in leaves than in twigs and in young vs old leaves and twigs. Phosphorus resorption efficiency showed a minimal variation from 26.6 to 47.0%. Therefore, P input intensified leaf and twig N enrichment with N addition, leaf and twig nutrients were both gradually resorbed with aging, and organ and age effects depended on the extent of nutrient limitation.


Asunto(s)
Cunninghamia/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Bosques , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Estaciones del Año , Suelo/química
6.
Ying Yong Sheng Tai Xue Bao ; 26(1): 1-8, 2015 Jan.
Artículo en Chino | MEDLINE | ID: mdl-25985647

RESUMEN

Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (P<0.05). In bulk soil, compared with the control, the treatments of pH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere effects, and have impact on nutrient cycling in tea plantation.


Asunto(s)
Lluvia Ácida , Nitrógeno/química , Fósforo/química , Rizosfera , Suelo/química , Camellia sinensis , Nitrificación , Microbiología del Suelo , Ureasa/análisis
7.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3398-404, 2015 Nov.
Artículo en Chino | MEDLINE | ID: mdl-26915196

RESUMEN

Topsoil of green space including typical forest, shrub and grassland were collected to measure their water soluble organic carbon ( WSOC) before and after incubation of 30 days at 5, 15, 25, 35 and, 45 °C. The results showed the average values of WSOC were higher in urban than in rural green spaces, but the percentage of WSOC to total organic carbon (TOC) showed an opposite trend. No significant changes were found among the three green space types in WSOC and WSOC/TOC. Response of WSOC in green space to incubation temperature was generally highest in urban sites, followed by suburban sites, and lowest in rural sites at the incubation temperature of 5 °C, but showed an opposite trend at the temperature of 45 °C. Response coefficient of WSOC to temperature change was lower in forest and shrub than in grassland, but increased along the urban-rural gradient. Further analysis showed that WSOC positively correlated with TOC, total nitrogen and available phosphorus, and the response coefficient of WSOC to temperature change negatively correlated with available phosphorus. In summary, exogenous substances input might lead to the accumulation of WSOC in urban green space, however, urban environment was helpful to maintain the stability of WSOC, which might be due to the enrichment of available phosphorus in urban sites.


Asunto(s)
Carbono/análisis , Bosques , Pradera , Suelo/química , Temperatura , Agua , China , Nitrógeno/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA