Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Poult Sci ; 103(3): 103386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176372

RESUMEN

The investigation examined the use of willow leaf extract (WLE) on broiler chickens, examining carcass characteristics, cecal microbiota, antioxidants, and blood parameters. In 4 groups of 300 chicks, a basal diet was given for 5 wk, and the first treatment was basal diet (C). The diets for the remaining 3 treatments (WLE150, WLE300, and WLE450) contained 150, 300, and 450 mg of willow leaf extract /kg, respectively. The study found that birds fed willow leaf extract supplements had significantly greater body weight (BW), body weight gain (BWG), and enhanced feed conversion ratio (FCR) vs. the control group. Birds fed at 450 mg/kg food showed the greatest growth features, carcass weight, liver weight, lower abdominal fat, better low-density lipoprotein (LDL), and high-density lipoprotein (HDL) concentrations, and highest hematological characteristics. Chickens fed diets supplemented with varied doses of willow leaf extract showed significantly increased antioxidant enzyme activity, with higher amounts of glutathione peroxidase (GPx) activity, superoxide dismutase (SOD), total antioxidant capacity (TAC), and lower malondialdehyde (MDA). However, in the study, birds fed a diet supplemented with 450 mg of willow leaf extract per kg meal showed a significant drop of 13.02%, which found no significant variations in hazardous bacteria (Escherichia coli) across 2 treatments (WLE150 and WLE300). In addition, the study discovered that birds fed with varied doses of willow leaf extract had fewer cecum infections (Staphylococci aureus). We conclude that using willow at a level of 450 mg/kg diet can significantly enhance the BWG, FCR, antioxidant levels and beneficial bacteria activity besides the condition of broiler chicken's general health.


Asunto(s)
Pollos , Salix , Animales , Antioxidantes/metabolismo , Salix/metabolismo , Ciego/microbiología , Extractos Vegetales/farmacología , Peso Corporal
2.
Poult Sci ; 103(3): 103457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295500

RESUMEN

This study used 300 1-day-old, sexless, developing chicks of Japanese quail to estimate the ability of vitamin C and/or garlic to antagonize the venomous influence of cadmium (Cd) on the hematological, immunological, and performance characteristics of developing Japanese quail. The quail was separated into 5 similar groups of 60 chicks apiece, and 6 duplicates (10 each) were given to each sub-group. The control group received a basal diet without any supplements. The Cd group was nourished with a basal diet of + 80 mg cadmium chloride (CdCl2)/kg diet. The 3rd group was fed a basal diet + 80 mg CdCl2/kg diet and complemented with a 200 mg Vitamin C (Cd + C)/kg diet. The 4th group was nourished with a basal diet + 80 mg CdCl2/kg diet and complemented by a 500 mg dried garlic powder (Cd + G)/kg diet. The 5th group was fed a basal diet + 80 mg CdCl2/kg diet, complemented by a 200 mg vitamin C/kg diet + 500 mg dried garlic powder (Cd + CG)/kg diet. Results showed that in the 5th group in which cadmium was added together with Vit C + garlic, there was an improvement in both live weight gain (1-42 d) and feed consumption (1-21 and 1-42 d ) compared to the group in which Cd was added alone. The addition of Vit C alone and together with garlic seems to completely improve the cadmium-related increase in alkaline phosphatase (ALP), and Aspartate aminotransferase (AST), and Malondialdehyde (MDA) levels when compared to the control. Compared to cadmium-polluted diets, quail that got cadmium and feed additives significantly reduced cadmium residue. In addition, the cadmium group's serum immunoglobulin M (IgM) level decreased significantly. These data imply that dietary supplementation with (C) or (G) may be beneficial in retrogressing the drop in immunoglobulin G (IgG) and IgM caused by Cd and minimizing Cd's deleterious influence on immunity.


Asunto(s)
Ácido Ascórbico , Ajo , Animales , Ácido Ascórbico/farmacología , Coturnix , Cadmio/toxicidad , Polvos , Pollos , Antioxidantes/farmacología , Vitaminas , Suplementos Dietéticos , Dieta/veterinaria , Codorniz , Inmunoglobulina M , Alimentación Animal/análisis
3.
Environ Sci Pollut Res Int ; 29(36): 54088-54107, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35292898

RESUMEN

This research evaluates the effect of dietary zinc oxide nanoparticles' (ZnO NPs) supplementation on growth performance, immunity, oxidative antioxidative properties, and histopathological picture of broiler chicken reared in the summer season. A total of 224 1-day-old male Cobb chicks were randomly allocated to seven groups of dietary treatments (n = 32). Seven isocaloric and isonitrogenous diets were formulated. ZnO NPs were added to the basal diet at seven different levels, 0, 5, 10, 20, 40, 60, and 80 ppm/kg diet, respectively, for 35 days. Results indicated that live body weight (g) did not differ significantly (P > 0.05) between treatment groups, whereas compared to control, the 5 ppm ZnO NPs/kg diet recorded the highest live body weight at 21 and 35 days. No significant effects for the feed consumption (g/bird/period) and feed conversion ratio (g feed/g gain) among treated and control birds were observed. Hematological and immunological variables showed significant (P ≤ 0.05) dose-dependent modulations by ZnO NP supplementation. Significant (P ≤ 0.05) differences were observed in the phagocytic activity, phagocytic index, and IgM and IgG between the treatment groups, with the 5 and 10 ppm ZnO NPs/kg diet recording the best values, followed by the 20 ppm ZnO NPs/kg diet. Different supplementations had nonsignificant effects on the digestibility of nutrients (P ≤ 0.05). Histopathological pictures of the kidney, liver, and lymphoid organs, ultrastructural examination of muscle tissues, and expression of inflammatory cytokines showed dose-dependent morphological and structural changes. In conclusion, the ZnO NP supplementation in broiler diet to eliminate the heat stress hazards in summer season is recommended in dose level of not more than 10 ppm/kg diet.


Asunto(s)
Nanopartículas , Óxido de Zinc , Alimentación Animal/análisis , Animales , Peso Corporal , Pollos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Masculino , Estaciones del Año , Zinc/metabolismo , Óxido de Zinc/química
4.
PLoS One ; 15(12): e0241393, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33370277

RESUMEN

Bee pollen is a natural product that has valuable nutritional and medicinal characteristics and has recently garnered increasing attention in the food industry due to its nutritive value. Here, we harvested pollen loads from the Al-Ahsa oasis in eastern Saudi Arabia during spring, summer, autumn, and winter in 2018/2019 to compare the nutritional value of bee pollen protein with the amino acid requirements of honeybees and adult humans. Based on the nutritional value of bee pollen protein, the optimal season for harvesting bee pollen was determined. The composition of the bee pollen showed the highest contents of crude protein, total amino acids, leucine, glutamic acid, valine, isoleucine, threonine, and glycine in samples collected in spring. The highest contents of lysine, phenylalanine, threonine, tryptophan, arginine, tyrosine, and cysteine were observed in samples collected in winter. The highest contents of histidine, methionine, and serine were in samples collected in autumn. Moreover, the highest levels of aspartic acid, proline, and alanine were in samples collected in summer. Leucine, valine, lysine, histidine, threonine, and phenylalanine (except in autumn bee pollen) contents in pollen from all four seasons were above the requirements of honeybees. Leucine, valine, histidine, isoleucine (except in autumn bee pollen), lysine (except in spring and summer bee pollen), and threonine (except in winter and spring bee pollen) in all tested samples were above the requirements of adult humans. In comparison with the minimal amino acid requirements of adult humans and honeybees, the 1st limiting amino acid in bee pollen collected during the different seasons was methionine. Bee pollen collected during spring (March-May) and winter (December-February) can be considered a nutritive food source for adult humans and honeybees.


Asunto(s)
Abejas , Polen/química , Adulto , Aminoácidos/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Abejas/crecimiento & desarrollo , Abejas/fisiología , Dieta , Humanos , Necesidades Nutricionales , Valor Nutritivo , Proteínas de Vegetales Comestibles/análisis , Arabia Saudita , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA