Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(20): 7666-7674, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37170530

RESUMEN

Intentional discharges of produced water from oil production platforms to the marine environment contain a complex mixture of toxicants, including polycyclic aromatic hydrocarbons (PAHs). Early life stages of fish are highly sensitive to petrogenic exposure, and short-term exposure during critical periods of embryonic development may have detrimental effects on larvae health and survival. However, why different periods are more sensitive to exposure than others are not fully understood. Three identical exposure experiments (48 h, approx. 30 µg/L tPAH, sum 42 PAHs) on lumpfish (Cyclopterus lumpus) embryos were conducted where only exposure timing was varied: 0-48 h post fertilization (hpf, starting before chorion hardening), 36-84 hpf (starting after chorion hardening), and 240-288 hpf (during organogenesis). Total PAH (tPAH) uptake at the end of exposure was 5× higher when exposed during fertilization than when exposed late (during organogenesis). The first evidence of cyp1a induction in lumpfish during embryogenesis was observed after 84 hpf. Early exposure affected lipid droplet coagulation, indicating altered lipid utilization during embryogenesis. Although no significant impacts of exposure were observed on hatching success, hatching was delayed when exposed at the latest time point. This study shows that chorion properties, lipid content, biotransformation potential, and timing of produced water exposure during lumpfish embryogenesis affected PAH uptake and elimination.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Agua , Biotransformación , Lípidos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Embrión no Mamífero/metabolismo
2.
Sci Total Environ ; 823: 153779, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35150678

RESUMEN

Chemical herders may be used to sequester and thicken surface oil slicks to increase the time window for performing in situ burning of spilled oil on the sea surface. For herder use to be an environmentally safe oil spill response option, information regarding their potential ecotoxicity both alone and in combination with oil is needed. This study aimed at assessing if using herders can cause toxicity to cold-water marine organisms. Our objective was to test the two chemical herders Siltech OP-40 (OP-40) and ThickSlick-6535 (TS-6535) with and without oil for toxicity using sensitive life stages of cold-water marine copepod (Calanus finmarchicus) and fish (Gadus morhua). For herders alone, OP-40 was consistently more toxic than TS-6535. To test herders in combination with oil, low-energy water accommodated fractions (LE-WAFs, without vortex) with Alaskan North Slope crude oils were prepared with and without herders. Dissolution of oil components from surface oil was somewhat delayed following herder application, due to herder-induced reduction in contact area between water and oil. The LE-WAFs were also used for toxicity testing, and we observed no significant differences in toxicity thresholds between treatments to LE-WAFs generated with oil alone and oil treated with herders. The operational herder-to-oil ratio is very low (1:500), and the herders tested in the present work displayed acute toxicity at concentrations well above what would be expected following in situ application. Application of chemical herders to oil slicks is not expected to add significant effects to that of the oil for cold-water marine species exposed to herder-treated oil slicks.


Asunto(s)
Copépodos , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Agua , Contaminantes Químicos del Agua/análisis
3.
Aquat Toxicol ; 237: 105881, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34139396

RESUMEN

Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.


Asunto(s)
Aceites Combustibles , Gadus morhua , Petróleo , Contaminantes Químicos del Agua , Animales , Ecosistema , Petróleo/toxicidad , Contaminantes Químicos del Agua/toxicidad
4.
Environ Pollut ; 251: 212-220, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31078960

RESUMEN

A multitude of recent studies have documented the detrimental effects of crude oil exposure on early life stages of fish, including larvae and embryos. While polycyclic aromatic hydrocarbons (PAHs), particularly alkyl PAHs, are often considered the main cause of observed toxic effects, other crude oil derived organic compounds are usually overlooked. In the current study, comprehensive two-dimensional gas chromatography coupled to mass spectrometry was applied to investigate the body burden of a wide range of petrogenic compounds in Atlantic haddock (Melanogrammus aeglefinus) and cod (Gadus morhua) embryos that had been exposed to sublethal doses of dispersed crude oil. Several groups of alkylated monoaromatic compounds (e.g. alkyl tetralins, indanes and alkyl benzenes), as well as highly alkylated PAHs, were found to accumulate in the fish embryos upon crude oil exposure. To investigate the toxicity of the monoaromatic compounds, two models (1-isopropyl-4-methyltetralin and 1-isopropyl-4-methylindane) were synthesized and shown to bioaccumulate and cause delayed hatching in developing embryos. Minor developmental effects, including craniofacial and jaw deformations and pericardial edemas, were also observed at the highest studied concentrations of the alkylindane.


Asunto(s)
Petróleo/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Peces , Gadiformes/fisiología , Gadus morhua/fisiología , Hidrocarburos/farmacología , Larva/efectos de los fármacos , Petróleo/análisis , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Technol ; 52(17): 9899-9907, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-29897747

RESUMEN

The risk of accidental oil spills in the Arctic is on the rise due to increased shipping and oil exploration activities, making it essential to calibrate parameters for risk assessment of oil spills to Arctic conditions. The toxicokinetics of crude oil components were assessed by exposing one lipid-poor (CIII) and one lipid-rich (CV) stage of the Arctic copepod Calanus hyperboreus to crude oil WSF (water-soluble fraction). Water concentrations and total body residues (BR), as well as lipid volume fractions, were measured at regular intervals during exposure and recovery. Bioconcentration factors (BCFs) and elimination rates ( ke) for 26 petrogenic oil components were estimated from one-compartment models fitted to the BR data. Our parameters were compared to estimations made by the OMEGA bioaccumulation model, which uses the octanol-water partitioning coefficient ( KOW) in QSAR (quantitative structure-activity relationship) predictions. Our parameters for the lipid-poor CIIIs generally agreed with the OMEGA predictions, while neither the BCFs nor the kes for the lipid-rich CVs fitted within the realistic range of the OMEGA parameters. Both the uptake and elimination rates for the CVs were in general half an order of magnitude lower than the OMEGA predictions, showing an overestimation of these parameters by the OMEGA model.


Asunto(s)
Copépodos , Petróleo , Contaminantes Químicos del Agua , Animales , Regiones Árticas , Toxicocinética
6.
Sci Total Environ ; 640-641: 138-143, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29859431

RESUMEN

Crude oil accidentally spilled into the marine environment undergoes natural weathering processes that result in oil components being dissolved into the water column or present in particulate form as dispersed oil droplets. Oil components dissolved in seawater are typically considered as more bioavailable to pelagic marine organisms and the main driver of crude oil toxicity, however, recent studies indicate that oil droplets may also contribute. The adhesion of crude oil droplets onto the eggs of pelagic fish species may cause enhanced transfer of oil components via the egg surface causing toxicity during the sensitive embryonic developmental stage. In the current study, we utilized an oil droplet dispersion generator to generate defined oil droplets sizes/concentrations and exposed Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to investigate if the potential for dispersed oil droplets to adhere onto the surface of eggs was species-dependent. The influence of a commercial chemical dispersant on the adhesion process was also studied. A key finding was that the adhesion of oil droplets was significantly higher for haddock than cod, highlighting key differences and exposure risks between the two species. Scanning electron microscopy indicates that the differences in oil droplet adhesion may be driven by the surface morphology of the eggs. Another important finding was that the adhesion capacity of oil droplets to fish eggs is significantly reduced (cod 37.3%, haddock 41.7%) in the presence of the chemical dispersant.


Asunto(s)
Gadiformes/fisiología , Óvulo/química , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Animales , Gadus morhua/fisiología , Contaminación por Petróleo
7.
Environ Sci Technol ; 52(7): 4358-4366, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29514001

RESUMEN

Microbial degradation following oil spills results in metabolites from the original oil. Metabolites are expected to display lower bioaccumulation potential and acute toxicity to marine organisms due to microbial-facilitated incorporation of chemical functional groups and a general decrease in lipophilicity. The toxicity and characterization of metabolites are poorly studied. The purpose of the present work was to evaluate the toxicity of degraded (0-21 days) water-soluble oil components. Low-energy water accommodated fraction (LE-WAF) of a weathered crude oil was prepared with nutrient amended seawater at 5 °C, kept in the dark, and sampled at 0, 10, 14, and 21 days. Samples were extracted with dichloromethane and toxicity experiments were conducted with reconstituted extracts. Toxicity experiments were conducted for 4 days on developing cod ( Gadus morhua) embryos during a critical period of their heart development. After exposure, embryos were kept in clean seawater and observed until 5 days post hatch. Survival, hatching, morphometric aberrations, and cardiac function was studied. The expected decrease in sublethal toxicity during the biodegradation period was not found, indicating that metabolites formed during biodegradation likely contributed to larvae toxicity.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Biodegradación Ambiental , Peces , Agua
8.
J Toxicol Environ Health A ; 80(16-18): 907-915, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28891761

RESUMEN

The aim of this study was to investigate impacts of fine particulate fraction of a commonly used barite-containing drilling mud on the pelagic filter feeding copepod Calanus finmarchicus. The results show that the tested drilling mud had a low acute toxicity on C. finmarchicus (LC50 > 320 mg/L) and that the observed toxicity was likely caused by dissolved constituents in the mud and not the particle phase containing the weighting agent barite. Further, animals were exposed to drilling mud at a concentration of 10 mg/L for 168 hr followed by a 100 hr recovery phase. A rapid uptake of drilling mud particles was observed, while the excretion was slow and incomplete even after 100 hr recovery in clean seawater. The uptake of drilling mud particles caused a significant increase in sinking velocity of copepods, indicating that uptake of drilling mud particles affected their buoyancy. Long-term exposure to low concentrations of drilling mud could therefore cause physical effects such as impacts on the animal's buoyancy which may affect the energy budget of the copepods.


Asunto(s)
Copépodos/efectos de los fármacos , Material Particulado/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Dosificación Letal Mediana , Petróleo/toxicidad , Agua de Mar/química , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA