Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770901

RESUMEN

Essential oils (EOs) are widely recognized as efficient and safe alternatives for controlling pest insects in foods. However, there is a lack of studies evaluating the toxicological stability of botanical insecticides in stored grains in order to establish criteria of use and ensure your efficiency. The objective of this work was to evaluate the toxicological stability of basil essential oil (O. basilicum) and its linalool and estragole components for Sitophilus zeamais (Motschulsky) adults in corn grains by fumigation. The identification of the chemical compounds of the essential oil was performed with a gas chromatograph coupled to a mass selective detector. Mortality of insects was assessed after 24 h exposure. After storage for six (EO) and two months (linalool and estragole) under different conditions of temperature (5, 20, and 35 °C) and light (with and without exposure to light), its toxicological stability was evaluated. Studies revealed that the essential oil of O. basilicum and its main components exhibited insecticidal potential against adults of S. zeamais. For greater toxicological stability, suitable storage conditions for them include absence of light and temperatures equal to or less than 20 °C.


Asunto(s)
Escarabajos/efectos de los fármacos , Control de Insectos , Insecticidas/farmacología , Ocimum basilicum/química , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacología , Animales , Estabilidad de Medicamentos , Insecticidas/química , Dosificación Letal Mediana , Aceites Volátiles/química , Aceites de Plantas/química , Pruebas de Toxicidad
2.
Sci Rep ; 9(1): 11161, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371762

RESUMEN

Given the insecticidal potential of eugenol as a fumigant, this work aimed to determine the diffusion coefficient of eugenol emanating from a pure standard solution (99%), as well as from clove essential oil (Eugenia caryophillata Thunb. (Myrtaceae)) through rice grain; to chemically analyse the volatile composition of commercially available eugenol and clove essential oil; and to evaluate the mortality of Sitophilus zeamais Motschulsky (Coleoptera: curculionidae) after exposure to eugenol inside a test chamber filled with rice. The solid phase microextraction method of extracting and quantifying eugenol by gas chromatography presented a good analytical response for the quantification of the analyte. There was no significant difference between the diffusion coefficient of eugenol diffusing from pure eugenol or from clove essential oil. The diffusion coefficient of eugenol through rice with the conditions herein adopted is 1.09 × 10-3 cm2 s-1. The characterization of clove essential oil confirmed the presence of eugenol as its major component (74.25%). A difference was observed in the composition of the distinct phases evaluated. The exposure of adult S. zeamais to diffused eugenol from pure eugenol over seven days resulted in significantly higher mortality rates (~37%) than eugenol diffused from clove essential oil (~11%). No differences in mortality rates were observed in individuals placed at different positions inside the test chamber during eugenol fumigation.


Asunto(s)
Escarabajos/efectos de los fármacos , Eugenol/farmacología , Fumigación/métodos , Oryza/parasitología , Animales , Aceite de Clavo/química , Difusión , Fumigación/normas , Insecticidas/farmacología , Aceites Volátiles , Extracción en Fase Sólida
3.
Sci Rep ; 9(1): 3723, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842484

RESUMEN

Vigna unguiculata, one of the most important legumes, mainly in underdeveloped countries, is susceptible to post-harvest losses in storage by Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae). The work evaluated the toxicity, inhibition of oviposition, instantaneous rate of population growth (ri) and the development of fumigated C. maculatus with the essential oil of Vanillosmopsis arborea and its major constituent, α-bisabolol. The experimental units consisted of 0.8 L flasks treated with concentrations of 1.2-11.2 µL L-1of air of the essential oil of V. arborea or its major constituent applied to disks of filter paper. α-Bisabolol was quantified as 409.33 mL L-1 of the essential oil. The development rate of C. maculatus was evaluated by daily adult counts. Oviposition was evaluated at lethal concentrations (LC50, LC25, LC10 and LC1). The LC50 and LC95 of the essential oil of V. arborea and α-bisabolol were 5.23 and 12.97 µL L-1 of air and 2.47 and 8.82 µL L-1 of air, respectively. At some concentrations, the α-bisabolol was more toxic to males than to females of the insect. Increased concentrations of the essential oil reduced the ri, rate of development, oviposition, and number of eggs of C. maculatus and therefore have potential for pest control.


Asunto(s)
Asteraceae/química , Insecticidas/química , Sesquiterpenos Monocíclicos/química , Aceites Volátiles/química , Animales , Escarabajos/efectos de los fármacos , Escarabajos/patogenicidad , Femenino , Fumigación , Insecticidas/farmacología , Masculino , Sesquiterpenos Monocíclicos/farmacología , Aceites Volátiles/farmacología , Oviposición/efectos de los fármacos , Plantas Medicinales/química , Caracteres Sexuales , Vigna/efectos de los fármacos , Vigna/parasitología
4.
Food Chem ; 243: 435-441, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29146362

RESUMEN

The present study aimed to optimize ozone (O3) treatments, as gas and dissolved in water, to remove difenoconazole and linuron in carrots. We employed a central composite design to study three variables governing the efficacy of treatments: O3 concentration, temperature and treatment time. The temperature did not influence the efficacy of treatments. The removal percentage of pesticides increases with increases in ozone concentration and the time of treatment. O3 application promoted the removal of more than 80% of pesticides when the roots were exposed for approximately 120min at 5 and 10mgL-1, respectively, in treatments with O3 as gas and dissolved in water. After storage, pesticide removal was higher than 98% for difenoconazole and 95% for linuron. The degradation products from the pesticides resulting from treatment were monitored, but none were found. This is the first report demonstrating the removal of difenoconazole and linuron from carrots by ozone.


Asunto(s)
Daucus carota/efectos de los fármacos , Dioxolanos/química , Manipulación de Alimentos/métodos , Ozono/farmacología , Plaguicidas/química , Triazoles/química , Daucus carota/química , Residuos de Medicamentos/química , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA