Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Investig Med ; 71(3): 191-201, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708288

RESUMEN

The molecular mechanisms of opium action with regard to coronary artery disease (CAD) have not yet been determined. The aim of this study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in CAD patients with and without opium addiction. This case-control study was conducted on three groups: (1) opium-addicted CAD patients (CAD + OA, n = 30); (2) CAD patients with no opium addiction (CAD, n = 30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n = 17). The protein and mRNA levels of CD9, CD36, and CD68 were evaluated by the flow cytometry and quantitative polymerase chain reaction (RT-qPCR) methods, respectively. The consumption of atorvastatin, aspirin, and glyceryl trinitrate was found be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD + OA group than in the CAD and Ctrl groups (p = 0.001 and p = 0.005, respectively). MDA levels significantly increased in CAD and CAD + OA patients in comparison with the Ctrl group (p = 0.010 and p = 0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Estudios de Casos y Controles , Antígenos CD36/genética , Enfermedad de la Arteria Coronaria/complicaciones , Inflamación/complicaciones , Opio , Tetraspanina 29/metabolismo , Factor de Necrosis Tumoral alfa
2.
J Investig Med ; 70(8): 1728-1735, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34872933

RESUMEN

The molecular mechanisms of opium with regard to coronary artery disease (CAD) have not yet been determined. The aim of the present study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in patients with CAD with and without opium addiction. This case-control study was conducted in three groups: (1) opium-addicted patients with CAD (CAD+OA, n=30); (2) patients with CAD with no opium addiction (CAD, n=30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n=17). Protein and messenger RNA (mRNA) levels of CD9, CD36, and CD68 were evaluated by flow cytometry and reverse transcription-quantitative PCR methods, respectively. Consumption of atorvastatin, aspirin, and glyceryl trinitrate was found to be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD+OA group than in the CAD and Ctrl groups (p=0.001 and p=0.005, respectively). MDA levels significantly increased in the CAD and CAD+OA groups in comparison with the Ctrl group (p=0.010 and p=0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at the gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Asunto(s)
Enfermedad de la Arteria Coronaria , Opio , Humanos , Estudios de Casos y Controles , Antígenos CD36/genética , Enfermedad de la Arteria Coronaria/complicaciones , Inflamación , Tetraspanina 29/metabolismo , Factor de Necrosis Tumoral alfa
3.
Adv Exp Med Biol ; 1328: 143-153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34981476

RESUMEN

Despite newer advances in cancer treatment, chemotherapy is still one of the most widely used treatment strategies in this field. However, this treatment strategy faces major challenges. Doxorubicin (Dox) is an effective chemotherapeutic agent used to treat various cancers. However, several studies have shown that the use of Dox in therapeutic concentrations is associated with serious side effects, such as cardiac toxicity. The use of natural products in combination with chemotherapeutic agents to reduce side effects is a novel approach, and several studies have shown promising results. In this regard, we examined the effect of Crocin on doxorubicin-induced cardiotoxicity in rat and H9c2 cell line. The in vitro model on H9C2 cells and the in vivo models on rats were treated with doxorubicin. Cell viability, DNA damage, and apoptosis were measured in H9C2 cell line in the presence and absence of Crocin. Oxidative stress and various inflammatory parameters, as well as cardiac function tests, also were assessed in doxorubicin-induced cardiotoxicity animal model in the presence and absence of Crocin. Our results showed that Crocin can significantly decrease apoptosis in H9C2 cell line through a reduction in ROS production and DNA damages. Moreover, evaluation of the effect of Crocin on doxorubicin-induced cardiotoxicity animal model showed that Crocin also can significantly reduce oxidative stress and inflammatory parameters in the serum of the animals. Assessment of cardiac function revealed that Crocin has a significant protective effect against doxorubicin-induced cardiotoxicity in the animal model. Our data indicate that Crocin significantly attenuated doxorubicin-induced cardiotoxicity. Hence, Crocin could be potentially used as an adjuvant treatment in combination with Dox to reduce cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Animales , Apoptosis , Cardiotoxicidad/prevención & control , Carotenoides/metabolismo , Carotenoides/farmacología , Doxorrubicina/toxicidad , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratas
4.
Daru ; 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209758

RESUMEN

PURPOSE: In Traditional Persian Medicine (TPM), different natural treatments have been suggested for skin damages such as Narcissus tazetta L. bulb application. New drug delivery systems such as niosomes have shown considerable increase transdermal drug delivery through stratum corneum, the main barrier against substances transport into skin. The aim of this study is preparation of niosomal formulations from N. tazetta bulb extract and evaluation of its in vitro wound healing effect. MATERIALS AND METHODS: Non-ionic surfactant vesicles (NSVs or niosomes) were prepared by film hydration method from percolated extract of N. tazetta bulb. A number of 12 niosomal formulations (F1-F12) were prepared using different proportions of Span 60/Tween 60/cholesterol and 80% methanol-dissolved/aqueous PEN (percolation extract of N. tazetta) (30 and 50 mg/ml). Their morphology, particle size, physical and chemical stability and encapsulation efficiency was studied. In vitro wound healing effect of various concentrations of the best PEN niosomal formulation (F9) was evaluated in comparison to PEN on human dermal fibroblasts (HDFs). RESULTS: Increasing the aqueous/methanolic PEN concentration from 3 to 5% resulted size reduction of NSVs with statistically significant difference (p < 0.05). F9 showed the most physicochemical stability and was chosen for in vitro wound healing effect. This formulation exhibited significantly effects (p < 0.05) on cell proliferation in HDF cells at 1.562 and 3.125 µg/ml compared with the untreated cells using neutral red assay. CONCLUSION: Formulation of PEN in niosome carrier significantly decreased the gap width on human dermal fibroblasts. Graphical abstract Schematic processes of proliferation effect of narcisus tazetta bulb on fibroblast cells.

5.
Biomed Pharmacother ; 92: 254-264, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28551545

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant brain cancer that causes high mortality in humans. It responds poorly to the most common cancer treatments, such as surgery, chemo- and radiation therapy. Temozolomide (TMZ) is an alkylating agent that has been widely used to treat GBM; resistance to this drug is often found. One unexplored possibility for overcoming this resistance is a treatment based on concomitant exposure to electromagnetic fields (EMF) and TMZ. Indeed, many evidences show that EMF affects cancer cells and drug performance. In this study, we evaluated the potential synergistic effect of 100µM TMZ and EMF (100Hz, 100G) on two human glioma cells line, i.e., U87 and T98G above single treatments, TMZ or EMF. Co-treatment synergistically enhanced apoptosis in U87 and T98G cells, by increasing the expression of P53, Bax, and Caspase-3 and decreasing that of Bcl-2 and Cyclin-D1. We also observed an increase in reactive oxygen species (ROS) production and the overexpression of the heme oxygenase-1 (HO-1) gene in comparison to controls. In conclusion, since EMF enhanced the apoptotic effect of TMZ, possibly through a redox regulation mechanism, the TMZ/EMF combination may be effective for glioma cancer treating. Further studies are needed to reveal the action mechanism of this possible novel therapeutic approach.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Citotoxinas/toxicidad , Dacarbazina/análogos & derivados , Campos Electromagnéticos/efectos adversos , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dacarbazina/toxicidad , Glioblastoma/patología , Humanos , Magnetoterapia/métodos , Temozolomida
6.
Int J Hematol ; 103(3): 274-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26830968

RESUMEN

Iron chelation therapy is an effective approach to the treatment of iron overload conditions, in which iron builds up to toxic levels in the body and may cause organ damage. Treatments using deferoxamine, deferasirox and deferiprone have been introduced and despite their disadvantages, they remain the first-line therapeutics in iron chelation therapy. Our study aimed to compare the effectiveness of the iron chelation agent TLc-A, a nano chelator synthetized based on the novel nanochelating technology, with deferoxamine. We found that TLc-A reduced iron overload in Caco2 cell line more efficiently than deferoxamine. In rats with iron overload, very low concentrations of TLc-A lowered serum iron level after only three injections of the nanochelator, while deferoxamine was unable to reduce iron level after the same number of injections. Compared with deferoxamine, TLc-A significantly increased urinary iron excretion and reduced hepatic iron content. The toxicity study showed that the intraperitoneal median lethal dose for TLc-A was at least two times higher than that for deferoxamine. In conclusion, our in vitro and in vivo studies indicate that the novel nano chelator compound, TLc-A, offers superior performance in iron reduction than the commercially available and widely used deferoxamine.


Asunto(s)
Quelantes del Hierro , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Animales , Células CACO-2 , Deferoxamina/metabolismo , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Humanos , Quelantes del Hierro/metabolismo , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/tratamiento farmacológico , Hígado/metabolismo , Masculino , Nanopartículas , Nanotecnología , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA