Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Rep ; 35(2): 108985, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852843

RESUMEN

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Asunto(s)
Envejecimiento/genética , Proteína 7 Relacionada con la Autofagia/genética , Disfunción Cognitiva/genética , Suplementos Dietéticos , Proteínas Quinasas/genética , Espermidina/farmacología , Ubiquitina-Proteína Ligasas/genética , Envejecimiento/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia/metabolismo , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cognición/efectos de los fármacos , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/prevención & control , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Proteínas Quinasas/metabolismo , Transducción de Señal , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell Metab ; 30(1): 111-128.e6, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031093

RESUMEN

Neuropeptide Y (NPY) exerts a powerful orexigenic effect in the hypothalamus. However, extra-hypothalamic nuclei also produce NPY, but its influence on energy homeostasis is unclear. Here we uncover a previously unknown feeding stimulatory pathway that is activated under conditions of stress in combination with calorie-dense food; NPY neurons in the central amygdala are responsible for an exacerbated response to a combined stress and high-fat-diet intervention. Central amygdala NPY neuron-specific Npy overexpression mimics the obese phenotype seen in a combined stress and high-fat-diet model, which is prevented by the selective ablation of Npy. Using food intake and energy expenditure as readouts, we demonstrate that selective activation of central amygdala NPY neurons results in increased food intake and decreased energy expenditure. Mechanistically, it is the diminished insulin signaling capacity on central amygdala NPY neurons under combined stress and high-fat-diet conditions that leads to the exaggerated development of obesity.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Animales , Temperatura Corporal , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/fisiología , Electrofisiología , Metabolismo Energético/fisiología , Inmunohistoquímica , Hibridación Fluorescente in Situ , Insulina/metabolismo , Masculino , Ratones , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
J Neurochem ; 149(5): 641-659, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006109

RESUMEN

The gut microbiota is increasingly recognized to modulate brain function by recent studies demonstrating the central effects of various gut microbial manipulation strategies. Our previous study demonstrated that antibiotic-induced alterations of hindgut microbiota are associated with changes in aromatic amino acid (AAA) metabolism and hypothalamic neurochemistry, while the underlying mechanistic insight is limited. Given that the microbial AAA metabolism can be affected by luminal carbohydrate availability, here we hypothesize that increasing hindgut carbohydrate availability affects the expression of neurotransmitters in the porcine hypothalamus. A hindgut microbiota-targeted strategy was adopted by increasing hindgut carbohydrate availability in a cecal-cannulated piglet model. Mechanistic involvement of AAAs along the gut microbiota-brain axis was further investigated in mice and neuronal cells. Increasing carbohydrate availability by cecal starch infusion led to a decrease in hindgut AAA metabolism, and an increase in systemic AAA availability, central AAA-derived neurotransmitters (5-HT, dopamine), and neurotrophin BDNF in piglets, indicating that hindgut microbiota affect hypothalamic neurochemistry in an AAA-dependent manner. Single AAA i.p. injection in mice revealed that an increase in circulating tryptophan and tyrosine elevated their concentrations in brain and finally promoted the expressions of 5-HT, dopamine, and BDNF in a time-dependent manner. Neuronal cells treated with single AAAs in vitro further demonstrated that tryptophan and tyrosine enhanced 5-HT and dopamine synthesis, respectively, and promoted BDNF expression partly through the 5-HT1A/DRD1-CREB pathway. Our study reveals that increasing hindgut carbohydrate availability promotes hypothalamic neurotransmitter synthesis and that AAAs act as potential mediators between hindgut microbiota and brain neurochemistry.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Carbohidratos , Microbioma Gastrointestinal/fisiología , Hipotálamo/metabolismo , Mucosa Intestinal/metabolismo , Neurotransmisores/biosíntesis , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Porcinos
4.
Sci Rep ; 7(1): 9912, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855710

RESUMEN

GPR88 is an orphan G-protein-coupled receptor with predominant expression in reward-related areas in the brain. While the lack of GPR88 has been demonstrated to induce behavioral deficits, the potential function of the receptor in the control of food intake and energy balance remains unexplored. In this work, the role of GPR88 in energy homeostasis was investigated in Gpr88 -/- mice fed either standard chow or high fat diet (HFD). Gpr88 -/- mice showed significantly reduced adiposity accompanied with suppressed spontaneous food intake, particularly pronounced under HFD treatment. While energy expenditure was likewise lower in Gpr88 -/- mice, body weight gain remained unchanged. Furthermore, deregulation in glucose tolerance and insulin responsiveness in response to HFD was attenuated in Gpr88 -/- mice. On the molecular level, distinct changes in the hypothalamic mRNA levels of cocaine-and amphetamine-regulated transcript (Cartpt), a neuropeptide involved in the control of feeding and reward, were observed in Gpr88 -/- mice. In addition, GPR88 deficiency was associated with altered expressions of the anorectic Pomc and the orexigenic Npy in the arcuate nucleus, especially under HFD condition. Together, our results indicate that GPR88 signalling is not only important for reward processes, but also plays a role in the central regulatory circuits for energy homeostasis.


Asunto(s)
Composición Corporal/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Adiposidad/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Femenino , Homeostasis/fisiología , Hipotálamo/metabolismo , Masculino , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Receptores Acoplados a Proteínas G/genética
5.
Brain Behav Immun ; 44: 106-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25218901

RESUMEN

Toll-like receptors (TLRs) and nuclear-binding domain (NOD)-like receptors (NLRs) are sensors of bacterial cell wall components to trigger an immune response. The TLR4 agonist lipopolysaccharide (LPS) is a strong immune activator leading to sickness and depressed mood. NOD agonists are less active but can prime immune cells to augment LPS-induced cytokine production. Since the impact of NOD and TLR co-activation in vivo has been little studied, the effects of the NOD1 agonist FK565 and the NOD2 agonist muramyl dipeptide (MDP), alone and in combination with LPS, on immune activation, brain function and sickness behavior were investigated in male C57BL/6N mice. Intraperitoneal injection of FK565 (0.001 or 0.003mg/kg) or MDP (1 or 3mg/kg) 4h before LPS (0.1 or 0.83mg/kg) significantly aggravated and prolonged the LPS-evoked sickness behavior as deduced from a decrease in locomotion, exploration, food intake and temperature. When given alone, FK565 and MDP had only minor effects. The exacerbation of sickness behavior induced by FK565 or MDP in combination with LPS was paralleled by enhanced plasma protein and cerebral mRNA levels of proinflammatory cytokines (IFN-γ, IL-1ß, IL-6, TNF-α) as well as enhanced plasma levels of kynurenine. Immunohistochemical visualization of c-Fos in the brain revealed that NOD2 synergism with TLR4 resulted in increased activation of cerebral nuclei relevant to sickness. These data show that NOD1 or NOD2 synergizes with TLR4 in exacerbating the immune, sickness and brain responses to peripheral immune stimulation. Our findings demonstrate that the known interactions of NLRs and TLRs at the immune cell level extend to interactions affecting brain function and behavior.


Asunto(s)
Encéfalo/inmunología , Conducta de Enfermedad/fisiología , Proteína Adaptadora de Señalización NOD1/fisiología , Proteína Adaptadora de Señalización NOD2/fisiología , Receptor Toll-Like 4/fisiología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Adyuvantes Inmunológicos/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/sangre , Citocinas/sangre , Citocinas/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Quinurenina/sangre , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Proteína Adaptadora de Señalización NOD1/agonistas , Proteína Adaptadora de Señalización NOD2/agonistas , Oligopéptidos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Receptor Toll-Like 4/agonistas , Triptófano/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA