Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36234779

RESUMEN

Chemotherapy is an aggressive form of chemical drug therapy aiming to destroy cancer cells. Adjuvant therapy may reduce hazards of chemotherapy and help in destroying these cells when obtained from natural products, such as medical plants. In this study, the potential therapeutic effect of Rosa damascena callus crude extract produced in vitamin-enhanced media is investigated on colorectal cancer cell line Caco-2. Two elicitors, i.e., L-ascorbic acid and citric acid at a concentration of 0.5 g/L were added to the callus induction medium. Callus extraction and the GC-MS analysis of methanolic crude extracts were also determined. Cytotoxicity, clonogenicity, proliferation and migration of Caco-2 colorectal cancer cells were investigated using MTT cytotoxicity, colony-forming, Ki-67 flow cytometry proliferation and Migration Scratch assays, respectively. Our results indicated that L-ascorbic acid treatment enhanced callus growth parameters and improved secondary metabolite contents. It showed the least IC50 value of 137 ug/mL compared to 237 ug/mL and 180 ug/mL in the citric acid-treated and control group. We can conclude that R. damascena callus elicited by L-ascorbic acid improved growth and secondary metabolite contents as well as having an efficient antiproliferative, anti-clonogenic and anti-migratory effect on Caco-2 cancer cells, thus, can be used as an adjuvant anti-cancer therapy.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Rosa , Adenocarcinoma/tratamiento farmacológico , Ácido Ascórbico/farmacología , Células CACO-2 , Ácido Cítrico , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Antígeno Ki-67 , Extractos Vegetales/química , Rosa/química , Vitaminas
2.
Life (Basel) ; 12(2)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35207560

RESUMEN

This study investigated the phytochemical contents of Taif's rose pruning wastes and their potential application as phytomedicine, thereby practicing a waste-recycling perspective. In the Al-Shafa highland, four Taif rose farms of various ages were chosen for gathering the pruning wastes (leaves and stems) for phytochemical and pharmacological studies. The leaves and stems included significant amounts of carbohydrates, cardiac glycosides, alkaloids, flavonoids, and other phenolic compounds. The cardiac glycoside and flavonoid contents were higher in Taif rose stems, while the phenolic and alkaloid contents were higher in the plant leaves. Cardiovascular glycosides (2.98-5.69 mg g-1), phenolics (3.14-12.41 mg GAE g-1), flavonoids (5.09-9.33 mg RUE g -1), and alkaloids (3.22-10.96 mg AE g-1) were among the phytoconstituents found in rose tissues. According to the HPLC analysis of the phenolic compounds, Taif's rose contains flavonoid components such as luteolin, apigenin, quercetin, rutin, kaempferol, and chrysoeriol; phenolics such as ellagic acid, catechol, resorcinol, gallic acid, and phloroglucinol; alkaloids such as berbamine, jatrorrhizine, palmatine, reticuline, isocorydine, and boldine. Warm water extract was highly effective against Bacillus subtilis, Escherichia coli, and Proteus vulgaris, whereas methanol and cold water extracts were moderately effective against Aspergillus fumigatus and Candida albicans. The study's findings suggested that Taif's rose wastes could be used for varied medical purposes.

3.
Environ Sci Pollut Res Int ; 28(31): 42547-42561, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33813694

RESUMEN

Three species of freshwater planktonic green microalgae: Ankistrodesmus braunii, Ankistrodesmus falcatus, and Scenedesmus incrassatulus, were isolated from the Nile water in Upper Egypt. These microalgae were exposed to nutritional (nitrogen, phosphorus, and iron) limitations and salinity stress to study their effects on the algal growth and to elevate the lipid content within their cells. The results indicated that exposure to these conditions had a significant impact on the algal growth. The lipid content of the studied algae increased as a result of the salinity stress. The highest lipid content was recorded in A. braunii culture treated with 50 mM NaCl (34.4% of dry weight) and S. incrassatulus cultures treated with 100 mM NaCl (37.7% of dry weight) on the 6th day of cultivation, while the culture of A. falcatus treated with 100 mM NaCl recorded the maximum lipid content (53% of dry weight) on the 10th day of the experiment. The biodiesel quality parameters of the fatty acid methyl ester profile of S. incrassatulus appeared to be in agreement with the international criteria. S. incrassatulus could be regarded as a quite promising feedstock for the biodiesel production.


Asunto(s)
Microalgas , Scenedesmus , Biocombustibles , Biomasa , Lípidos , Fósforo
4.
Mar Biotechnol (NY) ; 19(3): 219-231, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28456869

RESUMEN

Lipid production is an important indicator for evaluating microalgal species for biodiesel production. In this study, a new green microalga was isolated from a salt lake in Egypt and identified as Asteromonas gracilis. The main parameters such as biomass productivity, lipid content, and lipid productivity were evaluated in A. gracilis, cultivated in nutrient-starved (nitrogen, phosphorous), and salinity stress as a one-factor-at-a-time method. These parameters in general did not vary significantly from the standard nutrient growth media when these factors were utilized separately. Hence, response surface methodology (RSM) was assessed to study the combinatorial effect of different concentrations of the abovementioned factor conditions and to maximize the biomass productivity, lipid content, and lipid productivity of A. gracilis by determining optimal concentrations. RSM optimized media, including 1.36 M NaCl, 1 g/L nitrogen, and 0.0 g/L phosphorus recorded maximum biomass productivity, lipid content, and lipid productivity (40.6 mg/L/day, 39.3%, and 15.9 mg/L/day, respectively) which agreed well with the predicted values (40.1 mg/L/day, 43.6%, and 14.6 mg/L/day, respectively). Fatty acid profile of A. gracilis was composed of C16:0, C16:1, C18:0, C18:3, C18:2, C18:1, and C20:5, and the properties of fuel were also in agreement with international standards. These results suggest that A. gracilis is a promising feedstock for biodiesel production.


Asunto(s)
Biocombustibles , Chlorophyta/química , Ácidos Grasos/química , Biomasa , Medios de Cultivo/química , Lípidos/análisis , Nitrógeno/química , Fósforo/química , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA