Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Struct Biol ; 177(2): 248-58, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22182732

RESUMEN

Very little is known about the sub-cellular distribution of metal ions in cells. Some metals such as zinc, copper and iron are essential and play an important role in the cell metabolism. Dysfunctions in this delicate housekeeping may be at the origin of major diseases. There is also a prevalent use of metals in a wide range of diagnostic agents and drugs for the diagnosis or treatment of a variety of disorders. This is becoming more and more of a concern in the field of nanomedicine with the increasing development and use of nanoparticles, which are suspected of causing adverse effects on cells and organ tissues. Synchrotron-based X-ray and Fourier-transformed infrared microspectroscopies are developing into well-suited sub-micrometer analytical tools for addressing new problems when studying the role of metals in biology. As a complementary tool to optical and electron microscopes, developments and studies have demonstrated the unique capabilities of multi-keV microscopy: namely, an ultra-low detection limit, large penetration depth, chemical sensitivity and three-dimensional imaging capabilities. More recently, the capabilities have been extended towards sub-100nm lateral resolutions, thus enabling sub-cellular chemical imaging. Possibilities offered by these techniques in the biomedical field are described through examples of applications performed at the ESRF synchrotron-based microspectroscopy platform (ID21 and ID22 beamlines).


Asunto(s)
Tecnología Biomédica , Sincrotrones , Animales , Células 3T3 BALB , Neuronas Dopaminérgicas/metabolismo , Francia , Hepatocitos/metabolismo , Humanos , Masculino , Manganeso/metabolismo , Melaninas/metabolismo , Metales/metabolismo , Ratones , Microespectrofotometría/métodos , Células PC12 , Fósforo/metabolismo , Potasio/metabolismo , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Espermatozoides/metabolismo , Rayos X
2.
Radiat Res ; 157(2): 128-40, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11835676

RESUMEN

The large RBE (approximately 7) measured for the killing of Chinese hamster V79 cells by 340 eV ultrasoft X rays, which preferentially ionize the K shell of carbon atoms (Hervé du Penhoat et al., Radiat. Res. 151, 649-658, 1999), was used to investigate the location of sensitive sites for cell inactivation and the physical modes of action of radiation. The enhancement of the RBE above the carbon K-shell edge either may indicate a high intrinsic efficiency of carbon K-shell ionizations (due, for example, to a specific physical or chemical effect) or may be related to the preferential localization of these ionizations on the DNA. The second interpretation would indicate a strong local (within 3 nm) action of K-shell ionizations and consequently the importance of a direct mechanism for radiation lethality (without excluding an action in conjunction with an indirect component). To distinguish between these two hypotheses, the efficiencies of core ionizations in DNA atoms (phosphorus L-shell, carbon K-shell, and oxygen K-shell ionizations) to induce damages were investigated by measuring their capacities to produce DNA double-strand breaks (DSBs). The effect of photoionizations in isolated DNA was studied using pBS plasmids in a partially hydrated state. No enhancement of the efficiency of DSB induction by carbon K-shell ionizations compared to oxygen K-shell ionizations was found, supporting the hypothesis that it is the localization of these carbon K-shell events on DNA which gives to the 340 eV photons their high killing efficiency. In agreement with this interpretation, cell inactivation and DSB induction, which do not appear to be correlated when expressed in terms of yields per unit dose in the sample, exhibit a rather good correlation when expressed in terms of efficiencies per core event in the DNA. These results suggest that core ionizations in DNA, through core-hole relaxation in conjunction with localized effects of spatially correlated secondary and Auger electrons, may be the major critical events for cell inactivation, and that the resulting DSBs (or a constant fraction of these DSBs) may be a major class of unrepairable lesions.


Asunto(s)
Daño del ADN/efectos de la radiación , ADN/efectos de la radiación , Fibroblastos/efectos de la radiación , Rayos X/efectos adversos , Animales , Carbono/efectos de la radiación , Línea Celular/efectos de la radiación , Núcleo Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Cricetinae , Cricetulus , ADN Bacteriano/efectos de la radiación , ADN Recombinante/efectos de la radiación , ADN de Cadena Simple/efectos de la radiación , ADN Superhelicoidal/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Electrones , Rayos gamma , Iones , Pulmón/citología , Modelos Biológicos , Oxígeno/efectos de la radiación , Fósforo/efectos de la radiación , Fotones , Plásmidos/efectos de la radiación , Efectividad Biológica Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA