Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hum Hypertens ; 37(7): 548-553, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35931819

RESUMEN

Latitude and season determine exposure to ultraviolet radiation and correlate with population blood pressure. Evidence for Vitamin D causing this relationship is inconsistent, and temperature changes are only partly responsible for BP variation. In healthy individuals, a single irradiation with 20 J/cm2 UVA mobilises NO from cutaneous stores to the circulation, causes arterial vasodilatation, and elicits a transient fall in BP. We, therefore, tested whether low-dose daily UVA phototherapy might be an effective treatment for mild hypertension. 13 patients with untreated high-normal or stage 1 hypertension (BP 130-159/85-99 mm Hg), confirmed by 24-h ambulatory blood pressure (ABP), were recruited. Using home phototherapy lamps they were either exposed to 5 J/cm2 full body UVA (320-410 nm) radiation each day for 14 days, or sham-irradiated with lamps filtered to exclude wavelengths <500 nm. After a washout period of 3 ± 1 week, the alternate irradiation was delivered. 24-h ABP was measured on day 0 before either irradiation sequence and on day 14. Clinic BP was recorded on day 0, and within 90 min of irradiation on day 14. There was no effect on 24-h ABP following UVA irradiation. Clinic BP shortly after irradiation fell with UVA (-8.0 ± 2.9/-3.8 ± 1.1 mm Hg p = 0.034/0.029) but not sham irradiation (1.1 ± 3.0/0.9 ± 1.5 mm Hg). Once daily low-dose UVA does not control mildly elevated BP although it produces a transient fall shortly after irradiation. More frequent exposure to UVA might be effective. Alternatively, UVB, which photo-releases more NO from skin, could be tried.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Hipertensión , Humanos , Rayos Ultravioleta/efectos adversos , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Fototerapia , Hipertensión/diagnóstico
2.
Thorax ; 77(10): 968-975, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34853156

RESUMEN

RATIONALE: Dietary nitrate supplementation improves skeletal muscle oxygen utilisation and vascular endothelial function. We hypothesised that these effects might be sufficient to improve exercise performance in patients with COPD and hypoxia severe enough to require supplemental oxygen. METHODS: We conducted a single-centre, double-blind, placebo-controlled, cross-over study, enrolling adults with COPD who were established users of long-term oxygen therapy. Participants performed an endurance shuttle walk test, using their prescribed oxygen, 3 hours after consuming either 140 mL of nitrate-rich beetroot juice (BRJ) (12.9 mmol nitrate) or placebo (nitrate-depleted BRJ). Treatment order was allocated (1:1) by computer-generated block randomisation. MEASUREMENTS: The primary outcome was endurance shuttle walk test time. The secondary outcomes included area under the curve to isotime for fingertip oxygen saturation and heart rate parameters during the test, blood pressure, and endothelial function assessed using flow-mediated dilatation. Plasma nitrate and nitrite levels as well as FENO were also measured. MAIN RESULTS: 20 participants were recruited and all completed the study. Nitrate-rich BRJ supplementation prolonged exercise endurance time in all participants as compared with placebo: median (IQR) 194.6 (147.5-411.7) s vs 159.1 (121.9-298.5) s, estimated treatment effect 62 (33-106) s (p<0.0001). Supplementation also improved endothelial function: NR-BRJ group +4.1% (-1.1% to 14.8%) vs placebo BRJ group -5.0% (-10.6% to -0.6%) (p=0.0003). CONCLUSION: Acute dietary nitrate supplementation increases exercise endurance in patients with COPD who require supplemental oxygen. Trial registration number ISRCTN14888729.


Asunto(s)
Nitratos , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Estudios Cruzados , Tolerancia al Ejercicio , Suplementos Dietéticos , Antioxidantes , Oxígeno , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Hipoxia , Método Doble Ciego
3.
Antioxid Redox Signal ; 35(14): 1226-1268, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985343

RESUMEN

Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Pandemias , COVID-19/diagnóstico , Humanos , Oxidación-Reducción
4.
Redox Biol ; 37: 101731, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33002760

RESUMEN

Matcha and green tea catechins such as (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for H2S (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques we here show that popular Japanese and Chinese green teas and select catechins all catalytically oxidize hydrogen sulfide (H2S) to polysulfides with the potency of EGC > EGCG >> EG. This reaction is accompanied by the formation of sulfite, thiosulfate and sulfate, consumes oxygen and is partially inhibited by the superoxide scavenger, tempol, and superoxide dismutase but not mannitol, trolox, DMPO, or the iron chelator, desferrioxamine. We propose that the reaction proceeds via a one-electron autoxidation process during which one of the OH-groups of the catechin B-ring is autooxidized to a semiquinone radical and oxygen is reduced to superoxide, either of which can then oxidize HS- to thiyl radicals (HS•) which react to form hydrogen persulfide (H2S2). H2S oxidation reduces the B-ring back to the hydroquinone for recycling while the superoxide is reduced to hydrogen peroxide (H2O2). Matcha and catechins also concentration-dependently and rapidly produce polysulfides in HEK293 cells with the potency order EGCG > EGC > EG, an EGCG threshold of ~300 nM, and an EC50 of ~3 µM, suggesting green tea also acts as powerful pro-oxidant in vivo. The resultant polysulfides formed are not only potent antioxidants, but elicit a cascade of secondary cytoprotective effects, and we propose that many of the health benefits of green tea are mediated through these reactions. Remarkably, all green tea leaves constitutively contain small amounts of H2S2.


Asunto(s)
Catequina , Sulfuro de Hidrógeno , Antioxidantes/farmacología , Catequina/farmacología , Cromatografía Liquida , Células HEK293 , Humanos , Peróxido de Hidrógeno , Sulfuros , Espectrometría de Masas en Tándem , , Tiosulfatos
6.
Artículo en Inglés | MEDLINE | ID: mdl-32668607

RESUMEN

This article aims to alert the medical community and public health authorities to accumulating evidence on health benefits from sun exposure, which suggests that insufficient sun exposure is a significant public health problem. Studies in the past decade indicate that insufficient sun exposure may be responsible for 340,000 deaths in the United States and 480,000 deaths in Europe per year, and an increased incidence of breast cancer, colorectal cancer, hypertension, cardiovascular disease, metabolic syndrome, multiple sclerosis, Alzheimer's disease, autism, asthma, type 1 diabetes and myopia. Vitamin D has long been considered the principal mediator of beneficial effects of sun exposure. However, oral vitamin D supplementation has not been convincingly shown to prevent the above conditions; thus, serum 25(OH)D as an indicator of vitamin D status may be a proxy for and not a mediator of beneficial effects of sun exposure. New candidate mechanisms include the release of nitric oxide from the skin and direct effects of ultraviolet radiation (UVR) on peripheral blood cells. Collectively, this evidence indicates it would be wise for people living outside the tropics to ensure they expose their skin sufficiently to the sun. To minimize the harms of excessive sun exposure, great care must be taken to avoid sunburn, and sun exposure during high ambient UVR seasons should be obtained incrementally at not more than 5-30 min a day (depending on skin type and UV index), in season-appropriate clothing and with eyes closed or protected by sunglasses that filter UVR.


Asunto(s)
Salud Pública , Luz Solar , Rayos Ultravioleta , Europa (Continente) , Humanos , Quemadura Solar , Vitamina D , Deficiencia de Vitamina D
8.
Diabetologia ; 63(1): 179-193, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31713010

RESUMEN

AIMS/HYPOTHESIS: Exposure to sunlight has the potential to suppress metabolic dysfunction and obesity. We previously demonstrated that regular exposure to low-doses of ultraviolet radiation (UVR) reduced weight gain and signs of diabetes in male mice fed a high-fat diet, in part via release of nitric oxide from skin. Here, we explore further mechanistic pathways through which low-dose UVR exerts these beneficial effects. METHODS: We fed mice with a luciferase-tagged Ucp1 gene (which encodes uncoupling protein-1 [UCP-1]), referred to here as the Ucp1 luciferase transgenic mouse ('Thermomouse') a high-fat diet and examined the effects of repeated exposure to low-dose UVR on weight gain and development of metabolic dysfunction as well as UCP-1-dependent thermogenesis in interscapular brown adipose tissue (iBAT). RESULTS: Repeated exposure to low-dose UVR suppressed the development of glucose intolerance and hepatic lipid accumulation via dermal release of nitric oxide while also reducing circulating IL-6 (compared with mice fed a high-fat diet only). Dietary nitrate supplementation did not mimic the effects of low-dose UVR. A single low dose of UVR increased UCP-1 expression (by more than twofold) in iBAT of mice fed a low-fat diet, 24 h after exposure. However, in mice fed a high-fat diet, there was no effect of UVR on UCP-1 expression in iBAT (compared with mock-treated mice) when measured at regular intervals over 12 weeks. More extensive circadian studies did not identify any substantial shifts in UCP-1 expression in mice exposed to low-dose UVR, although skin temperature at the interscapular site was reduced in UVR-exposed mice. The appearance of cells with a white adipocyte phenotype ('whitening') in iBAT induced by consuming the high-fat diet was suppressed by exposure to low-dose UVR in a nitric oxide-dependent fashion. Significant shifts in the expression of important core gene regulators of BAT function (Dio2, increased more than twofold), fatty acid transport (increased Fatp2 [also known as Slc27a2]), lipolysis (decreased Atgl [also known as Pnpla2]), lipogenesis (decreased Fasn) and inflammation (decreased Tnf), and proportions of macrophages (increased twofold) were observed in iBAT of mice exposed to low-dose UVR. These effects were independent of nitric oxide released from skin. CONCLUSIONS/INTERPRETATION: Our results suggest that non-burning (low-dose) UVR suppresses the BAT 'whitening', steatotic and pro-diabetic effects of consuming a high-fat diet through skin release of nitric oxide, with some metabolic and immune pathways in iBAT regulated by UVR independently of nitric oxide.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Óxido Nítrico/metabolismo , Rayos Ultravioleta , Tejido Adiposo Pardo/efectos de la radiación , Animales , Glucemia/metabolismo , Ingestión de Alimentos , Masculino , Ratones , Piel/metabolismo , Piel/efectos de la radiación , Temperatura , Proteína Desacopladora 1/metabolismo , Aumento de Peso/fisiología
9.
Am J Clin Nutr ; 111(1): 79-89, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31599928

RESUMEN

BACKGROUND: Inorganic nitrate, abundant in leafy green vegetables and beetroot, is thought to have protective health benefits. Adherence to a Mediterranean diet reduces the incidence and severity of coronary artery disease, whereas supplementation with nitrate can improve submaximal exercise performance. Once ingested, oral commensal bacteria may reduce nitrate to nitrite, which may subsequently be reduced to nitric oxide during conditions of hypoxia and in the presence of "nitrite reductases" such as heme- and molybdenum-containing enzymes. OBJECTIVE: We aimed to explore the putative effects of inorganic nitrate and nitrite on mitochondrial function in skeletal muscle. METHODS: Mice were subjected to a nitrate/nitrite-depleted diet for 2 wk, then supplemented with sodium nitrate, sodium nitrite, or sodium chloride (1 g/L) in drinking water ad libitum for 7 d before killing. Skeletal muscle mitochondrial function and expression of uncoupling protein (UCP) 3, ADP/ATP carrier protein (AAC) 1 and AAC2, and pyruvate dehydrogenase (PDH) were assessed by respirometry and Western blotting. Studies were also undertaken in human skeletal muscle biopsies from a cohort of coronary artery bypass graft patients treated with either sodium nitrite (30-min infusion of 10 µmol/min) or vehicle [0.9% (wt:vol) saline] 24 h before surgery. RESULTS: Neither sodium nitrate nor sodium nitrite supplementation altered mitochondrial coupling efficiency in murine skeletal muscle, and expression of UCP3, AAC1, or AAC2, and PDH phosphorylation status did not differ between the nitrite and saline groups. Similar results were observed in human samples. CONCLUSIONS: Sodium nitrite failed to improve mitochondrial metabolic efficiency, rendering this mechanism implausible for the purported exercise benefits of dietary nitrate supplementation. This trial was registered at clinicaltrials.gov as NCT04001283.


Asunto(s)
Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Nitratos/administración & dosificación , Nitritos/administración & dosificación , Animales , Estudios de Cohortes , Suplementos Dietéticos/análisis , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo
10.
Nitric Oxide ; 94: 27-35, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604146

RESUMEN

Native highlanders (e.g. Sherpa) demonstrate remarkable hypoxic tolerance, possibly secondary to higher levels of circulating nitric oxide (NO) and increased microcirculatory blood flow. As part of the Xtreme Alps study (a randomised placebo-controlled trial of dietary nitrate supplementation under field conditions of hypobaric hypoxia), we investigated whether dietary supplementation with nitrate could improve NO availability and microvascular blood flow in lowlanders. Plasma measurements of nitrate, nitrite and nitroso species were performed together with measurements of sublingual (sidestream dark-field camera) and forearm blood flow (venous occlusion plethysmography) in 28 healthy adult volunteers resident at 4559 m for 1 week; half receiving a beetroot-based high-nitrate supplement and half receiving an identically-tasting low nitrate 'placebo'. Dietary supplementation increased plasma nitrate concentrations 4-fold compared to the placebo group, both at sea level (SL; 19.2 vs 76.9 µM) and at day 5 (D5) of high altitude (22.9 vs 84.3 µM, p < 0.001). Dietary nitrate supplementation also significantly increased both plasma nitrite (0.78 vs. 0.86 µM SL, 0.31 vs. 0.41 µM D5, p = 0.03) and total nitroso product (11.3 vs. 19.7 nM SL, 9.7 vs. 12.3 nM D5, p < 0.001) levels both at sea level and at 4559 m. However, plasma nitrite concentrations were more than 50% lower at 4559 m compared to sea level in both treatment groups. Despite these significant changes, dietary nitrate supplementation had no effect on any measured read-outs of sublingual or forearm blood flow, even when environmental hypoxia was experimentally reversed using supplemental oxygen. In conclusion, dietary nitrate supplementation does not improve microcirculatory function at 4559 m.


Asunto(s)
Microcirculación/fisiología , Nitratos/sangre , Adulto , Mal de Altura/fisiopatología , Velocidad del Flujo Sanguíneo , Suplementos Dietéticos , Femenino , Humanos , Masculino , Nitratos/administración & dosificación , Nitratos/metabolismo , Nitritos/sangre , Compuestos Nitrosos/sangre , Adulto Joven
11.
Nat Commun ; 8(1): 1177, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079736

RESUMEN

Cysteine hydropersulfide (CysSSH) occurs in abundant quantities in various organisms, yet little is known about its biosynthesis and physiological functions. Extensive persulfide formation is apparent in cysteine-containing proteins in Escherichia coli and mammalian cells and is believed to result from post-translational processes involving hydrogen sulfide-related chemistry. Here we demonstrate effective CysSSH synthesis from the substrate L-cysteine, a reaction catalyzed by prokaryotic and mammalian cysteinyl-tRNA synthetases (CARSs). Targeted disruption of the genes encoding mitochondrial CARSs in mice and human cells shows that CARSs have a crucial role in endogenous CysSSH production and suggests that these enzymes serve as the principal cysteine persulfide synthases in vivo. CARSs also catalyze co-translational cysteine polysulfidation and are involved in the regulation of mitochondrial biogenesis and bioenergetics. Investigating CARS-dependent persulfide production may thus clarify aberrant redox signaling in physiological and pathophysiological conditions, and suggest therapeutic targets based on oxidative stress and mitochondrial dysfunction.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Cisteína/química , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Simulación por Computador , Cisteína/análogos & derivados , Disulfuros/química , Escherichia coli/metabolismo , Humanos , Sulfuro de Hidrógeno/química , Ratones , Ratones Noqueados , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Compuestos de Sulfhidrilo/química , Sulfuros/química , Espectrometría de Masas en Tándem
12.
Nitric Oxide ; 71: 57-68, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29042272

RESUMEN

Nitric oxide (NO) production plays a central role in conferring tolerance to hypoxia. Tibetan highlanders, successful high-altitude dwellers for millennia, have higher circulating nitrate and exhaled NO (ENO) levels than native lowlanders. Since nitrate itself can reduce the oxygen cost of exercise in normoxia it may confer additional benefits at high altitude. Xtreme Alps was a double-blinded randomised placebo-controlled trial to investigate how dietary nitrate supplementation affects physiological responses to hypoxia in 28 healthy adult volunteers resident at 4559 m for 1 week; 14 receiving a beetroot-based high-nitrate supplement and 14 receiving a low-nitrate 'placebo' of matching appearance/taste. ENO, vital signs and acute mountain sickness (AMS) severity were recorded at sea level (SL) and daily at altitude. Moreover, standard spirometric values were recorded, and saliva and exhaled breath condensate (EBC) collected. There was no significant difference in resting cardiorespiratory variables, peripheral oxygen saturation or AMS score with nitrate supplementation at SL or altitude. Median ENO levels increased from 1.5/3.0  mPa at SL, to 3.5/7.4 mPa after 5 days at altitude (D5) in the low and high-nitrate groups, respectively (p = 0.02). EBC nitrite also rose significantly with dietary nitrate (p = 0.004), 1.7-5.1  µM at SL and 1.6-6.3 µM at D5, and this rise appeared to be associated with increased levels of ENO. However, no significant changes occurred to levels of EBC nitrate or nitrosation products (RXNO). Median salivary nitrite/nitrate concentrations increased from 56.5/786 µM to 333/5,194  µM  with nitrate supplementation at SL, and changed to 85.6/641 µM and 341/4,553 µM on D5. Salivary RXNO rose markedly with treatment at SL from 0.55 µM to 5.70 µM. At D5 placebo salivary RXNO had increased to 1.90 µM whilst treatment RXNO decreased to 3.26 µM. There was no association with changes in any observation variables or AMS score. In conclusion, dietary nitrate supplementation is well tolerated at altitude and significantly increases pulmonary NO availability and both salivary and EBC NO metabolite concentrations. Surprisingly, this is not associated with changes in hemodynamics, oxygen saturation or AMS development.


Asunto(s)
Mal de Altura/prevención & control , Suplementos Dietéticos , Pulmón/fisiología , Nitratos/uso terapéutico , Adulto , Beta vulgaris , Femenino , Jugos de Frutas y Vegetales , Humanos , Masculino , Nitratos/administración & dosificación , Nitratos/análisis , Nitratos/metabolismo , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Nitritos/análisis , Nitritos/metabolismo , Oxígeno/sangre , Frecuencia Respiratoria/fisiología , Saliva/metabolismo
13.
J Endocrinol ; 233(1): 81-92, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28154004

RESUMEN

Exposure to sunlight may limit cardiometabolic risk. In our previous studies, regular exposure to sub-erythemal (non-burning) ultraviolet radiation (UVR) reduced signs of adiposity and cardiometabolic dysfunction in mice fed a high-fat diet. Some of the observed effects were dependent on skin release of nitric oxide after UVR exposure. Here, we examine the effects of sub-erythemal UVR on signs of adiposity and metabolic dysfunction in already overweight mice, comparing the effects of two sunlamps with distinct emitted light spectra. Mice were fed a high-fat diet from 8 weeks of age, with UVR administered twice a week from 14 weeks of age until they were killed at 20 weeks of age. Mice were irradiated with the same dose of UVB radiation (1 kJ/m2) from either FS40 (65% UVB, 35% UVA) or CLEO (4% UVB, 96% UVA) sunlamps, but substantially more UVA from the latter. FS40 UVR (but not CLEO UVR) significantly reduced mouse weights and weight gain, compared to mice fed a high-fat diet (only). These effects were dependent on nitric oxide. Conversely, CLEO UVR (but not FS40 UVR) significantly reduced circulating LDL cholesterol. Both light sources reduced fasting insulin levels, and the extent of hepatic steatosis; the latter was reversed by topical application of cPTIO, suggesting an important role for skin release of nitric oxide in preventing hepatic lipid accumulation. These results suggest that there may be a number of benefits achieved by regular exposure to safe (non-burning) levels of sunlight or UV-containing phototherapy, with effects potentially dependent on the predominance of the wavelengths of UVR administered.


Asunto(s)
Adiposidad/efectos de la radiación , Obesidad/metabolismo , Rayos Ultravioleta , Adiponectina/sangre , Animales , Colesterol/sangre , Dieta Alta en Grasa , Hígado Graso/metabolismo , Insulina/sangre , Leptina/sangre , Masculino , Ratones , Óxido Nítrico/metabolismo , Piel/metabolismo , Piel/efectos de la radiación
14.
Nitric Oxide ; 64: 61-67, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28042082

RESUMEN

Dietary supplementation with inorganic nitrate (NO3-) has been shown to induce a multitude of advantageous cardiovascular and metabolic responses during rest and exercise. While there is some suggestion that pharmacokinetics may differ depending on the NO3- source ingested, to the best of our knowledge this has yet to be determined experimentally. Here, we compare the plasma pharmacokinetics of NO3-, nitrite (NO2-), and total nitroso species (RXNO) following oral ingestion of either NO3- rich beetroot juice (BR) or chard gels (GEL) with the associated changes in blood pressure (BP). Repeated samples of venous blood and measurements of BP were collected from nine healthy human volunteers before and after ingestion of the supplements using a cross-over design. Plasma concentrations of RXNO and NO2- were quantified using reductive gas-phase chemiluminescence and NO3- using high pressure liquid ion chromatography. We report that, [NO3-] and [NO2-] were increased and systolic BP reduced to a similar extent in each experimental arm, with considerable inter-individual variation. Intriguingly, there was a greater increase in [RXNO] following ingestion of BR in comparison to GEL, which may be a consequence of its higher polyphenol content. In conclusion, our data suggests that while differences in circulating NO2- and NO3- concentrations after oral administration of distinct NO3--rich supplementation sources are moderate, concentrations of metabolic by-products may show greater-than-expected variability; the significance of the latter observation for the biological effects under study remains to be investigated.


Asunto(s)
Beta vulgaris , Jugos de Frutas y Vegetales , Nitratos , Preparaciones de Plantas , Adulto , Disponibilidad Biológica , Presión Sanguínea/efectos de los fármacos , Humanos , Masculino , Nitratos/administración & dosificación , Nitratos/sangre , Nitratos/farmacocinética , Nitratos/farmacología , Nitritos/sangre , Preparaciones de Plantas/administración & dosificación , Preparaciones de Plantas/farmacocinética , Preparaciones de Plantas/farmacología , Adulto Joven
15.
Diabetes ; 66(3): 674-688, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28028076

RESUMEN

Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and ß-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health.


Asunto(s)
Fibronectinas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Nitratos/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Condicionamiento Físico Animal , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Anciano , Ácidos Aminoisobutíricos , Animales , Beta vulgaris , Cromatografía Liquida , Método Doble Ciego , Femenino , Fibronectinas/metabolismo , Jugos de Frutas y Vegetales , Cromatografía de Gases y Espectrometría de Masas , Hormona del Crecimiento/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Resistencia a la Insulina , Masculino , Espectrometría de Masas , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Wistar , Transcriptoma , Ácido gamma-Aminobutírico/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
16.
Respir Res ; 17(1): 116, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27655266

RESUMEN

BACKGROUND: Vitamin D is under scrutiny as a potential regulator of the development of respiratory diseases characterised by chronic lung inflammation, including asthma and chronic obstructive pulmonary disease. It has anti-inflammatory effects; however, knowledge around the relationship between dietary vitamin D, inflammation and the microbiome in the lungs is limited. In our previous studies, we observed more inflammatory cells in the bronchoalveolar lavage fluid and increased bacterial load in the lungs of vitamin D-deficient male mice with allergic airway disease, suggesting that vitamin D might modulate the lung microbiome. In the current study, we examined in more depth the effects of vitamin D deficiency initiated early in life, and subsequent supplementation with dietary vitamin D on the composition of the lung microbiome and the extent of respiratory inflammation. METHODS: BALB/c dams were fed a vitamin D-supplemented or -deficient diet throughout gestation and lactation, with offspring continued on this diet post-natally. Some initially deficient offspring were fed a supplemented diet from 8 weeks of age. The lungs of naïve adult male and female offspring were compared prior to the induction of allergic airway disease. In further experiments, offspring were sensitised and boosted with the experimental allergen, ovalbumin (OVA), and T helper type 2-skewing adjuvant, aluminium hydroxide, followed by a single respiratory challenge with OVA. RESULTS: In mice fed a vitamin D-containing diet throughout life, a sex difference in the lung microbial community was observed, with increased levels of an Acinetobacter operational taxonomic unit (OTU) in female lungs compared to male lungs. This effect was not observed in vitamin D-deficient mice or initially deficient mice supplemented with vitamin D from early adulthood. In addition, serum 25-hydroxyvitamin D levels inversely correlated with total bacterial OTUs, and Pseudomonas OTUs in the lungs. Increased levels of the antimicrobial murine ß-defensin-2 were detected in the bronchoalveolar lavage fluid of male and female mice fed a vitamin D-containing diet. The induction of OVA-induced allergic airway disease itself had a profound affect on the OTUs identified in the lung microbiome, which was accompanied by substantially more respiratory inflammation than that induced by vitamin D deficiency alone. CONCLUSION: These data support the notion that maintaining sufficient vitamin D is necessary for optimal lung health, and that vitamin D may modulate the lung microbiome in a sex-specific fashion. Furthermore, our data suggest that the magnitude of the pro-inflammatory and microbiome-modifying effects of vitamin D deficiency were substantially less than that of allergic airway disease, and that there is an important interplay between respiratory inflammation and the lung microbiome.

17.
Nitric Oxide ; 60: 24-31, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27593617

RESUMEN

The purpose of this study was to investigate the effects of dietary nitrate supplementation, in the form of beetroot juice, on acute mountain sickness (AMS) symptoms and physiological responses, in a group of young males trekking to Mount Everest Base Camp (EBC). Forty healthy male students (mean age (SD): 16 (1) yrs) trekked to EBC over 11 days. Following an overnight fast, each morning participants completed the Lake Louise AMS questionnaire and underwent a series of physiological tests: resting blood pressure as well as resting and exercising heart rate, respiratory rate, and peripheral oxygen saturation. The exercise test consisted of a standardised 2-min stepping protocol and measurements were taken in the last 10 s. Participants in the intervention arm of the study consumed 140 ml of concentrated beetroot juice daily, containing approximately 10 mmol of nitrate, while those in the control arm consumed 140 ml of concentrated blackcurrant cordial with negligible nitrate content. Drinks were taken for the first seven days at high altitude (days 2-8), in two equal doses; one with breakfast, and one with the evening meal. Mixed modelling revealed no significant between-groups difference in the incidence of AMS (Odds Ratio - nitrate vs. CONTROL: 1.16 (95% CI: 0.59; 2.29)). Physiological changes occurring during ascent to high altitude generally were not significantly different between the two groups (Model Coef (95% CI) - average difference nitrate vs. CONTROL: systolic blood pressure, 0.16 (-4.47; 4.79); peripheral oxygen saturation, 0.28 (-0.85; 1.41); heart rate, -0.48 (-8.47; 7.50) (Model Coef (95% CI) - relative difference nitrate vs. CONTROL: ventilatory rate, 0.95 (0.82; 1.08)). Modelling revealed that diastolic blood pressure was 3.37 mmHg (0.24; 6.49) higher for participants in the beetroot juice, however this difference was no larger than that found at baseline and no interaction effect was observed. Supplementation with dietary nitrate did not significantly change symptoms of AMS or alter key physiological variables, in a group of adolescent males during a high altitude trekking expedition. There was no evidence of harm from dietary nitrate supplementation in this context. Given the wide confidence intervals in all models, a larger sample size would be required to exclude a false negative result. Our data suggest that prolonged oral nitrate supplementation is safe and feasible at altitude but has little physiological or clinical effect.


Asunto(s)
Mal de Altura , Beta vulgaris , Jugos de Frutas y Vegetales , Nitratos , Adolescente , Mal de Altura/tratamiento farmacológico , Mal de Altura/fisiopatología , Presión Sanguínea/efectos de los fármacos , Suplementos Dietéticos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Montañismo , Nitratos/administración & dosificación , Nitratos/efectos adversos , Nitratos/uso terapéutico
18.
BMC Biol ; 13: 110, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26694920

RESUMEN

BACKGROUND: Insulin sensitivity in skeletal muscle is associated with metabolic flexibility, including a high capacity to increase fatty acid (FA) oxidation in response to increased lipid supply. Lipid overload, however, can result in incomplete FA oxidation and accumulation of potentially harmful intermediates where mitochondrial tricarboxylic acid cycle capacity cannot keep pace with rates of ß-oxidation. Enhancement of muscle FA oxidation in combination with mitochondrial biogenesis is therefore emerging as a strategy to treat metabolic disease. Dietary inorganic nitrate was recently shown to reverse aspects of the metabolic syndrome in rodents by as yet incompletely defined mechanisms. RESULTS: Herein, we report that nitrate enhances skeletal muscle FA oxidation in rodents in a dose-dependent manner. We show that nitrate induces FA oxidation through a soluble guanylate cyclase (sGC)/cGMP-mediated PPARß/δ- and PPARα-dependent mechanism. Enhanced PPARß/δ and PPARα expression and DNA binding induces expression of FA oxidation enzymes, increasing muscle carnitine and lowering tissue malonyl-CoA concentrations, thereby supporting intra-mitochondrial pathways of FA oxidation and enhancing mitochondrial respiration. At higher doses, nitrate induces mitochondrial biogenesis, further increasing FA oxidation and lowering long-chain FA concentrations. Meanwhile, nitrate did not affect mitochondrial FA oxidation in PPARα(-/-) mice. In C2C12 myotubes, nitrate increased expression of the PPARα targets Cpt1b, Acadl, Hadh and Ucp3, and enhanced oxidative phosphorylation rates with palmitoyl-carnitine; however, these changes in gene expression and respiration were prevented by inhibition of either sGC or protein kinase G. Elevation of cGMP, via the inhibition of phosphodiesterase 5 by sildenafil, also increased expression of Cpt1b, Acadl and Ucp3, as well as CPT1B protein levels, and further enhanced the effect of nitrate supplementation. CONCLUSIONS: Nitrate may therefore be effective in the treatment of metabolic disease by inducing FA oxidation in muscle.


Asunto(s)
GMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Alimentación Animal/análisis , Animales , Dieta , Relación Dosis-Respuesta a Droga , Masculino , Biogénesis de Organelos , Oxidación-Reducción , Ratas , Ratas Wistar
19.
PLoS One ; 10(12): e0144504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26698120

RESUMEN

BACKGROUND: Dietary nitrate supplementation can enhance exercise performance in healthy people, but it is not clear if it is beneficial in COPD. We investigated the hypotheses that acute nitrate dosing would improve exercise performance and reduce the oxygen cost of submaximal exercise in people with COPD. METHODS: We performed a double-blind, placebo-controlled, cross-over single dose study. Subjects were randomised to consume either nitrate-rich beetroot juice (containing 12.9 mmoles nitrate) or placebo (nitrate-depleted beetroot juice) 3 hours prior to endurance cycle ergometry, performed at 70% of maximal workload assessed by a prior incremental exercise test. After a minimum washout period of 7 days the protocol was repeated with the crossover beverage. RESULTS: 21 subjects successfully completed the study (age 68 ± 7 years; BMI 25.2 ± 5.5 kg/m2; FEV1 percentage predicted 50.1 ± 21.6%; peak VO2 18.0 ± 5.9 ml/min/kg). Resting diastolic blood pressure fell significantly with nitrate supplementation compared to placebo (-7 ± 8 mmHg nitrate vs. -1 ± 8 mmHg placebo; p = 0.008). Median endurance time did not differ significantly; nitrate 5.65 (3.90-10.40) minutes vs. placebo 6.40 (4.01-9.67) minutes (p = 0.50). However, isotime oxygen consumption (VO2) was lower following nitrate supplementation (16.6 ± 6.0 ml/min/kg nitrate vs. 17.2 ± 6.0 ml/min/kg placebo; p = 0.043), and consequently nitrate supplementation caused a significant lowering of the amplitude of the VO2-percentage isotime curve. CONCLUSIONS: Acute administration of oral nitrate did not enhance endurance exercise performance; however the observation that beetroot juice caused reduced oxygen consumption at isotime suggests that further investigation of this treatment approach is warranted, perhaps targeting a more hypoxic phenotype. TRIAL REGISTRATION: ISRCTN Registry ISRCTN66099139.


Asunto(s)
Suplementos Dietéticos , Terapia por Ejercicio , Nitratos/administración & dosificación , Enfermedad Pulmonar Obstructiva Crónica/terapia , Anciano , Estudios Cruzados , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Consumo de Oxígeno , Proyectos Piloto , Pronóstico
20.
Amino Acids ; 47(9): 1941-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077715

RESUMEN

Asymmetric dimethylarginine (ADMA) is a key endogenous inhibitor of endothelial NO synthase that affects endothelial function, blood pressure and vascular remodeling. Increased plasma levels of ADMA are associated with worse outcome from cardiovascular disease. Due to endothelial dysfunction before and after kidney transplantation, renal transplant recipients (RTR) are at high risk for the alleged deleterious effects of ADMA. We investigated the associations of ADMA levels with all-cause mortality and graft failure in RTR. Plasma ADMA levels were determined in 686 stable outpatient RTR (57 % male, 53 ± 13 years), with a functioning graft for ≥1 year. Determinants of ADMA were evaluated with multivariate linear regression models. Associations between ADMA and mortality were assessed using multivariable Cox regression analyses. The strongest associations with plasma ADMA in the multivariable analyses were male gender, donor age, parathyroid hormone, NT-pro-BNP and use of calcium supplements. During a median follow-up of 3.1 [2.7-3.9] years, 79 (12 %) patients died and 45 (7 %) patients developed graft failure. ADMA was associated with increased all-cause mortality [HR 1.52 (95 % CI 1.26-1.83] per SD increase, P < 0.001], whereby associations remained upon adjustment for confounders. ADMA was associated with graft failure [HR 1.41 (1.08-1.83) per SD increase, P = 0.01]; however, upon addition of eGFR significance was lost. High levels of plasma ADMA are associated with increased mortality in RTR. Our findings connect disturbed NO metabolism with patient survival after kidney transplantation.


Asunto(s)
Arginina/análogos & derivados , Endotelio Vascular/metabolismo , Rechazo de Injerto/sangre , Rechazo de Injerto/mortalidad , Trasplante de Riñón , Modelos Biológicos , Adulto , Anciano , Arginina/sangre , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA