Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 17(11): e1009181, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34723955

RESUMEN

Sensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


Asunto(s)
Modelos Neurológicos , Colículos Superiores/fisiología , Estimulación Acústica , Animales , Percepción Auditiva/fisiología , Mapeo Encefálico/estadística & datos numéricos , Biología Computacional , Fenómenos Electrofisiológicos , Femenino , Masculino , Ratones , Ratones Endogámicos CBA , Modelos Psicológicos , Neuronas/fisiología , Dinámicas no Lineales , Estimulación Luminosa , Sensación/fisiología , Colículos Superiores/citología , Percepción Visual/fisiología
2.
Nat Commun ; 11(1): 1087, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107385

RESUMEN

Sound localization plays a critical role in animal survival. Three cues can be used to compute sound direction: interaural timing differences (ITDs), interaural level differences (ILDs) and the direction-dependent spectral filtering by the head and pinnae (spectral cues). Little is known about how spectral cues contribute to the neural encoding of auditory space. Here we report on auditory space encoding in the mouse superior colliculus (SC). We show that the mouse SC contains neurons with spatially-restricted receptive fields (RFs) that form an azimuthal topographic map. We found that frontal RFs require spectral cues and lateral RFs require ILDs. The neurons with frontal RFs have frequency tunings that match the spectral structure of the specific head and pinna filter for sound coming from the front. These results demonstrate that patterned spectral cues in combination with ILDs give rise to the topographic map of azimuthal auditory space.


Asunto(s)
Vías Auditivas/fisiología , Señales (Psicología) , Localización de Sonidos/fisiología , Colículos Superiores/fisiología , Estimulación Acústica , Animales , Vías Auditivas/citología , Mapeo Encefálico/métodos , Pabellón Auricular/fisiología , Electrodos Implantados , Femenino , Masculino , Ratones , Neuronas/fisiología , Colículos Superiores/citología
3.
Neuron ; 48(4): 577-89, 2005 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-16301175

RESUMEN

Ephrin-As and their receptors, EphAs, are expressed in the developing cortex where they may act to organize thalamic inputs. Here, we map the visual cortex (V1) in mice deficient for ephrin-A2, -A3, and -A5 functionally, using intrinsic signal optical imaging and microelectrode recording, and structurally, by anatomical tracing of thalamocortical projections. V1 is shifted medially, rotated, and compressed and its internal organization is degraded. Expressing ephrin-A5 ectopically by in utero electroporation in the lateral cortex shifts the map of V1 medially, and expression within V1 disrupts its internal organization. These findings indicate that interactions between gradients of EphA/ephrin-A in the cortex guide map formation, but that factors other than redundant ephrin-As are responsible for the remnant map. Together with earlier work on the retinogeniculate map, the current findings show that the same molecular interactions may operate at successive stages of the visual pathway to organize maps.


Asunto(s)
Mapeo Encefálico , Efrina-A2/fisiología , Efrina-A3/fisiología , Efrina-A5/fisiología , Corteza Visual/embriología , Corteza Visual/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Desarrollo Embrionario , Efrina-A2/deficiencia , Efrina-A2/metabolismo , Efrina-A3/deficiencia , Efrina-A3/metabolismo , Efrina-A5/deficiencia , Efrina-A5/metabolismo , Ligandos , Ratones , Ratones Noqueados , Retina/fisiología , Transmisión Sináptica/fisiología , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Tálamo/fisiología , Corteza Visual/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA