Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 404(Pt A): 134515, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240559

RESUMEN

Andrographis paniculata (Burm. F.) Nees (AP) was a typical plant resource that has the concomitant function of both foodstuff and medicine, while the action mechanisms of its immune regulation, anti-inflammatory and anti-viral effects and the specific components remain unclear. In this work, a screening approach combining bio-affinity ultrafiltration with liquid chromatography mass spectrometry (UF-LC/MS) was hired to screen potential bioactive compounds from AP. The crude extract of AP exerted COX-2 and ACE2 inhibitory effects by other bioassays. Meanwhile, a total of eleven ligands targeting COX-2, IL-6 and ACE2 were screened out. Thereinto, two compounds including andrographolide and 14-deoxy-11,12-didehydroandrographolide exhibited strong binding affinities to COX-2, IL-6 and ACE2 by UF-LC/MS and molecular docking analysis. This is the first report to apply UF-LC/MS approach to rapidly screen out multi-target ligands from AP, and further decipher corresponding mechanisms, which could be beneficial to expedite the search for new multi-target bioactive compounds in other natural products or foods.


Asunto(s)
Andrographis , Diterpenos , Andrographis/química , Andrographis/metabolismo , Ultrafiltración/métodos , Andrographis paniculata , Cromatografía Líquida de Alta Presión/métodos , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Enzima Convertidora de Angiotensina 2 , Interleucina-6 , Extractos Vegetales/farmacología , Extractos Vegetales/química
2.
J Inflamm Res ; 15: 4677-4692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35996684

RESUMEN

Background: Dysosma versipellis (D. versipellis) has been traditionally used as a folk medicine for ages. However, the specific phytochemicals responsible for their correlated anti-inflammatory, anti-proliferative and antiviral activities remain unknown. Purpose: This study aimed to explore the specific active components in D. versipellis responsible for its potential anti-inflammatory, anti-proliferative, and antiviral effects, and further elucidate the corresponding mechanisms of action. Methods: Bioaffinity ultrafiltration coupled to liquid chromatography-mass spectrometry (UF-LC/MS) was firstly hired to fast screen for the anti-inflammatory, anti-proliferative and antiviral compounds from rhizomes of D. versipellis, and then further validation was conducted using in vitro inhibition assays and molecular docking. Results: A total of 12, 12, 9 and 12 phytochemicals with considerable affinities to Topo I, Topo II, COX-2 and ACE2 were fished out, respectively. The anti-proliferative assay in vitro indicated that podophyllotoxin and quercetin exhibited comparably strong inhibitory rates on A549 and HT-29 cells compared with 5-FU and etoposide. Meanwhile, kaempferol displayed prominent dose-dependent inhibition against COX-2 with IC50 value at 0.36 ± 0.02 µM lower than indomethacin at 0.73 ± 0.07 µM. Furthermore, quercetin exerted stronger inhibitory effect against ACE2 with IC50 value at 104.79 ± 8.26 µM comparable to quercetin 3-O-glucoside at 135.25 ± 6.54 µM. Conclusion: We firstly showcased an experimental investigation on the correlations between bioactive phytochemicals of D. versipellis and their multiple drug targets reflecting its potential pharmacological activities, and further constructed a multi-target and multi-component network to decipher its empirical traditional applications. It could not only offer a reliable and valuable experimental basis to better comprehend the curative effects of D. versipellis but also provide more new insights and strategies for other traditional medicinal plants.

3.
Front Pharmacol ; 12: 749189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759823

RESUMEN

Podophyllum sinense (P. sinense) has been used as a traditional herbal medicine for ages due to its extensive pharmaceutical activities, including antiproliferative, anti-inflammatory, antiviral, insecticidal effects, etc. Nevertheless, the specific bioactive constituents responsible for its antiproliferative, anti-inflammatory, and antiviral activities remain elusive, owing to its complicated and diversified chemical components. In order to explore these specific bioactive components and their potential interaction targets, affinity ultrafiltration with multiple drug targets coupled with high performance liquid chromatography/mass spectrometry (UF-HPLC/MS) strategy was developed to rapidly screen out and identify bioactive compounds against four well-known drug targets that are correlated to the application of P. sinense as a traditional medicine, namely, Topo I, Topo II, COX-2, and ACE2. As a result, 7, 10, 6, and 7 phytochemicals were screened out as the potential Topo I, Topo II, COX-2, and ACE2 ligands, respectively. Further confirmation of these potential bioactive components with antiproliferative and COX-2 inhibitory assays in vitro was also implemented. Herein, diphyllin and podophyllotoxin with higher EF values demonstrated higher inhibitory rates against A549 and HT-29 cells as compared with those of 5-FU and etoposide. The IC50 values of diphyllin were calculated at 6.46 ± 1.79 and 30.73 ± 0.56 µM on A549 and HT-29 cells, respectively. Moreover, diphyllin exhibited good COX-2 inhibitory activity with the IC50 value at 1.29 ± 0.14 µM, whereas indomethacin was 1.22 ± 0.08 µM. In addition, those representative constituents with good affinity on Topo I, Topo II, COX-2, or ACE2, such as diphyllin, podophyllotoxin, and diphyllin O-glucoside, were further validated with molecular docking analysis. Above all, the integrated method of UF-HPLC/MS with multiple drug targets rapidly singled out multi-target bioactive components and partly elucidated their action mechanisms regarding its multiple pharmacological effects from P. sinense, which could provide valuable information about its further development for the new multi-target drug discovery from natural medicines.

4.
J Hazard Mater ; 241-242: 418-26, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23092611

RESUMEN

In the present study, waste phosphogypsum (PG) was utilized firstly to prepare hydroxyapatite nanoparticles (nHAp) via microwave irradiation technology. The nHAp derived from PG exhibited a hexagonal structure with the particle size about 20 nm × 60 nm and high purity. Meanwhile, the adsorption behaviour of fluoride onto the nHAp derived from PG was investigated to evaluate the potential application of this material for the treatment of the wastewater polluted with fluoride. The results indicate that the nHAp derived from PG can be used as an efficient adsorbent for the removal of fluoride from aqueous solution. The maximum adsorption capacities calculated from Langmuir-Freundlich model were 19.742, 26.108, 36.914 and 40.818 mg F(-)/g nHAp for 298, 308, 318 and 328 K, respectively. The pseudo-second order kinetic model was found to provide the best correlation of the used experimental data compared to the pseudo-first order and the adsorption isotherm could be well defined by Langmuir-Freundlich equation. The adsorption mechanism investigation shows that electrostatic interaction and hydrogen bond are the main driving force for fluoride uptake onto nHAp derived from waste PG.


Asunto(s)
Sulfato de Calcio/química , Durapatita/química , Fluoruros/aislamiento & purificación , Residuos Industriales , Nanopartículas/química , Fósforo/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Sulfato de Calcio/efectos de la radiación , Enlace de Hidrógeno , Cinética , Microscopía Electrónica de Transmisión , Microondas , Modelos Teóricos , Fósforo/efectos de la radiación , Reciclaje , Soluciones , Electricidad Estática , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA