Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155265, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422649

RESUMEN

BACKGROUND: Safer and more effective drugs are needed for the treatment of acute pancreatitis (AP). Qingjie Huagong decoction (QJHGD) has been applied to treat AP for many years and has shown good clinical effects. However, the potential mechanism has not yet been determined. PURPOSE: To investigate the role and underlying mechanism of the effects of QJHGD on AP both in vitro and in vivo. METHODS: QJHGD was characterized by UHPLC-Q-Orbitrap-MS. The protective effect of QJHDG and the underlying mechanism were investigated in MPC-83 cells in vitro. A caerulein-induced AP model was established to evaluate the protective effect of QJHGD in mice. CCK-8 assays were used to detect cell viability. The contents of inflammatory mediators were determined by ELISA. Expression levels of circRNA, miRNA and mRNA were determined by qRT-PCR. Protein expression was determined using Western blot. Pancreatic tissues were assessed by hematoxylin and eosin staining as well as immunohistochemical and immunofluorescence analyses. Pull-down and luciferase activity assays were performed to determine the regulatory relationships of circHipk3, miR-193a-5p and NLRP3. RESULTS: Our results confirmed that mmu-miR-193a-5p was sponged by mmu-circHipk3, and NLRP3 was a target of miR-193a-5p. In vitro experiments showed that QJHGD enhanced MPC-83 cell viability by regulating circHipk3 sponging mir-193a-5 targeting NLRP3 and inhibiting pyroptosis-related factors. Finally, we showed that QJHGD ameliorated pancreatic tissue injury in AP mice via this pathway. CONCLUSION: This study demonstrate that QJHDG exerted its anti-AP effects via the circHipk3/miR-193a-5p/NLRP3 pathway, revealing a novel mechanism for the therapeutic effect of QJHDG on AP.


Asunto(s)
MicroARNs , Pancreatitis , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Células Acinares , Enfermedad Aguda , Pancreatitis/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo
2.
Drug Des Devel Ther ; 17: 3169-3192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900883

RESUMEN

Purpose: YiShen HuoXue decoction (YSHXD) is a formulation that has been used clinically for the treatment of renal fibrosis (RF) for many years. We aimed to clarify therapeutic effects of YSHXD against RF and potential pharmacological mechanisms. Materials and Methods: We used network pharmacology analysis and machine-learning to screen the core components and core targets of YSHXD against RF, followed by molecular docking and molecular dynamics simulations to confirm the reliability of the results. Finally, we validated the network pharmacology analysis experimentally in HK-2 cells and a rat model of RF established by unilateral ureteral ligation (UUO). Results: Quercetin, kaempferol, luteolin, beta-sitosterol, wogonin, stigmasterol, isorhamnetin, baicalein, and dihydrotanshinlactone progesterone were identified as the main active components of YSHXD in the treatment of unilateral ureteral ligation-induced RF, with IL-6, IL1ß, TNF, AR, and PTGS2 as core target proteins. Molecular docking and molecular dynamics simulations further confirmed the relationship between compounds and target proteins. The potential molecular mechanism of YSHXD predicted by network pharmacology analysis was confirmed in HK-2 cells and UUO rats. YSHXD downregulated NLRP3, ASC, NF-κBp65, Caspase-1, GSDMD, PTGS2, IL-1ß, IL-6, IL-18, TNF-α, α-SMA and upregulated HGF, effectively alleviating the RF process. Conclusion: YSHXD exerts important anti-inflammatory and anti-cellular inflammatory necrosis effects by inhibiting the NLRP3/caspase-1/GSDMD-mediated pyroptosis pathway, indicating that YSHXD represents a new strategy and complementary approach to RF therapy.


Asunto(s)
Medicamentos Herbarios Chinos , Piroptosis , Animales , Ratas , Ciclooxigenasa 2 , Interleucina-6 , Simulación del Acoplamiento Molecular , Proteína con Dominio Pirina 3 de la Familia NLR , Farmacología en Red , Reproducibilidad de los Resultados , Caspasas , Medicamentos Herbarios Chinos/farmacología
3.
Chin J Integr Med ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37861962

RESUMEN

OBJECTIVE: To identify the core targets of Rheum palmatum L. and Salvia miltiorrhiza Bge., (Dahuang-Danshen, DH-DS) and the mechanism underlying its therapeutic efficacy in acute pancreatitis (AP) using a network pharmacology approach and validate the findings in animal experiments. METHODS: Network pharmacology analysis was used to elucidate the mechanisms underlying the therapeutic effects of DH-DS in AP. The reliability of the results was verified by molecular docking simulation and molecular dynamics simulation. Finally, the results of network pharmacology enrichment analysis were verified by immunohistochemistry, Western blot analysis and real-time quantitative PCR, respectively. RESULTS: Sixty-seven common targets of DH-DS in AP were identified and mitogen-activated protein kinase 3 (MAPK3), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), protein c-Fos (FOS) were identified as core targets in the protein interaction (PPI) network analysis. Gene ontology analysis showed that cellular response to organic substance was the main functions of DH-DS in AP, and Kyoto Encyclopedia of Genes and Genomes analysis showed that the main pathway included Th17 cell differentiation. Molecular docking simulation confirmed that DH-DS binds with strong affinity to MAPK3, STAT3 and FOS. Molecular dynamics simulation revealed that FOS-isotanshinone II and STAT3-dan-shexinkum d had good binding capacity. Animal experiments indicated that compared with the AP model group, DH-DS treatment effectively alleviated AP by inhibiting the expression of interleukin-1ß, interleukin-6 and tumor necrosis factor-α, and blocking the activation of Th17 cell differentiation (P<0.01). CONCLUSION: DH-DS could inhibit the expression of inflammatory factors and protect pancreatic tissues, which would be functioned by regulating Th17 cell differentiation-related mRNA and protein expressions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA