Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hazard Mater ; 432: 128723, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35316632

RESUMEN

Removing and recovering uranium (U) from U-mining wastewater would be appealing, which simultaneously reduces the adverse environmental impact of U mining activities and mitigates the depletion of conventional U resources. In this study, we demonstrate the application of a constant-voltage electrochemical (CVE) method for the removal and recovery of U from U-mining wastewater, in an ambient atmosphere. The effects of operation conditions were elucidated in synthetic U-bearing water experiments, and the cell voltage and the ionic strength were found to play important roles in both the U extraction kinetics and the operation cost. The mechanistic studies show that, in synthetic U-bearing water, the CVE U extraction proceeds exclusively via a single-step one-electron reduction mechanism, where pentavalent U is the end product. In real U-mining wastewater, the interference of water matrices led to the disproportionation of the pentavalent U, resulting in the formation of tetravalent and hexavalent U in the extraction products. The U extraction efficacy of the CVE method was evaluated in real U-mining wastewater, and results show that the CVE U extraction method can be efficient with operation costs ranging from $0.55/kgU ~ $64.65/kgU, with varying cell voltages from 1.0 V to 4.0 V, implying its feasibility from the economic perspective.


Asunto(s)
Uranio , Contaminantes Radiactivos del Agua , Minería , Aguas Residuales , Agua , Contaminantes Radiactivos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA