Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuropharmacology ; 176: 108241, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712273

RESUMEN

Cocaine abuse remains a public health threat around the world. There are no pharmacological treatments approved for cocaine use disorder. Cannabis has received growing attention as a treatment for many conditions, including addiction. Most cannabis-based medication development has focused on cannabinoid CB1 receptor (CB1R) antagonists (and also inverse agonists) such as rimonabant, but clinical trials with rimonabant have failed due to its significant side-effects. Here we sought to determine whether a novel and selective CB2R inverse agonist, Xie2-64, has similar therapeutic potential for cocaine use disorder. Computational modeling indicated that Xie2-64 binds to CB2R in a way similar to SR144528, another well-characterized but less selective CB2R antagonist/inverse agonist, suggesting that Xie2-64 may also have CB2R antagonist profiles. Unexpectedly, systemic administration of Xie2-64 or SR144528 dose-dependently inhibited intravenous cocaine self-administration and shifted cocaine dose-response curves downward in rats and wild-type, but not in CB2R-knockout, mice. Xie2-64 also dose-dependently attenuated cocaine-enhanced brain-stimulation reward maintained by optical stimulation of ventral tegmental area dopamine (DA) neurons in DAT-Cre mice, while Xie2-64 or SR144528 alone inhibited optical brain-stimulation reward. In vivo microdialysis revealed that systemic or local administration of Xie2-64 into the nucleus accumbens reduced extracellular dopamine levels in a dose-dependent manner in rats. Together, these results suggest that Xie2-64 has significant anti-cocaine reward effects likely through a dopamine-dependent mechanism, and therefore, deserves further study as a new pharmacotherapy for cocaine use disorder.


Asunto(s)
Derivados del Benceno/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Trastornos Relacionados con Cocaína/prevención & control , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Agonismo Inverso de Drogas , Receptor Cannabinoide CB2/agonistas , Sulfonamidas/uso terapéutico , Animales , Derivados del Benceno/química , Derivados del Benceno/farmacología , Agonistas de Receptores de Cannabinoides/química , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Noqueados , Estructura Secundaria de Proteína , Ratas , Ratas Long-Evans , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo , Roedores , Autoadministración , Sulfonamidas/química , Sulfonamidas/farmacología
2.
Int J Oncol ; 53(3): 949-960, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30015838

RESUMEN

Melanoma is one of the most fatal and therapy-resistant types of cancer; therefore, identifying novel therapeutic candidates to improve patient survival is an ongoing effort. Previous studies have revealed that pimozide is not sufficient to treat melanoma; therefore, enhancing the treatment is necessary. Indoleamine 2, 3­dioxygenase (IDO) is an immunosuppressive, intracellular rate-limiting enzyme, which contributes to immune tolerance in various tumours, including melanoma, and inhibition of IDO may be considered a novel therapeutic strategy when combined with pimozide. The present study aimed to assess the antitumour activities of pimozide in vitro, and to investigate the effects of pimozide combined with L­methyl-tryptophan (L­MT) in vivo. For in vitro analyses, the B16 melanoma cell line was used. Cell cytotoxicity assay, cell viability assay, wound­healing assay and western blotting were conducted to analyse the effects of pimozide on B16 cells. Furthermore, B16 cell-bearing mice were established as the animal model. Haematoxylin and eosin staining, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end-labelling staining, western blotting and flow cytometry were performed to determine the effects of monotherapy and pimozide and L­MT cotreatment on melanoma. The results demonstrated that pimozide exhibited potent antitumour activity via the regulation of proliferation, apoptosis and migration. Furthermore, the antitumour effects of pimozide were enhanced when combined with L­MT, not only via regulation of proliferation, apoptosis and migration, but also via immune modulation. Notably, pimozide may regulate tumour immunity through inhibiting the activities of signal transducer and activator of transcription (Stat)3 and Stat5. In conclusion, the present study proposed the use of pimozide in combination with the IDO inhibitor, L­MT, as a potential novel therapeutic strategy for the treatment of melanoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Tolerancia Inmunológica/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Melanoma Experimental/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Humanos , Tolerancia Inmunológica/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Pimozida/farmacología , Pimozida/uso terapéutico , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Triptófano/análogos & derivados , Triptófano/farmacología , Triptófano/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Sci Rep ; 6: 33963, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27678063

RESUMEN

Combination therapy is a popular treatment for various diseases in the clinic. Among the successful cases, Traditional Chinese Medicinal (TCM) formulae can achieve synergistic effects in therapeutics and antagonistic effects in toxicity. However, characterizing the underlying molecular synergisms for the combination of drugs remains a challenging task due to high experimental expenses and complication of multicomponent herbal medicines. To understand the rationale of combination therapy, we investigated Sini Decoction, a well-known TCM consisting of three herbs, as a model. We applied our established diseases-specific chemogenomics databases and our systems pharmacology approach TargetHunter to explore synergistic mechanisms of Sini Decoction in the treatment of cardiovascular diseases. (1) We constructed a cardiovascular diseases-specific chemogenomics database, including drugs, target proteins, chemicals, and associated pathways. (2) Using our implemented chemoinformatics tools, we mapped out the interaction networks between active ingredients of Sini Decoction and their targets. (3) We also in silico predicted and experimentally confirmed that the side effects can be alleviated by the combination of the components. Overall, our results demonstrated that our cardiovascular disease-specific database was successfully applied for systems pharmacology analysis of a complicated herbal formula in predicting molecular synergetic mechanisms, and led to better understanding of a combinational therapy.

4.
J Chem Inf Model ; 56(6): 1152-63, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27186994

RESUMEN

Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral antagonist(s) at low concentration. Moreover, the hit from the active CB2 model also behaves as a neutral antagonist at low concentration. Our studies provide new insight leading to a better understanding of the structural and conformational differences between two states of CB2 and illuminate the effects of structure on virtual screening and drug design.


Asunto(s)
Descubrimiento de Drogas , Simulación de Dinámica Molecular , Receptor Cannabinoide CB2/química , Receptor Cannabinoide CB2/metabolismo , Evaluación Preclínica de Medicamentos , Ligandos , Conformación Proteica , Homología de Secuencia de Aminoácido , Termodinámica , Interfaz Usuario-Computador
5.
J Chem Inf Model ; 55(3): 572-88, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25642729

RESUMEN

The transient receptor potential vanilloid type 1 (TRPV1) is a heat-activated cation channel protein, which contributes to inflammation, acute and persistent pain. Antagonists of human TRPV1 (hTRPV1) represent a novel therapeutic approach for the treatment of pain. Developing various antagonists of hTRPV1, however, has been hindered by the unavailability of a 3D structure of hTRPV1. Recently, the 3D structures of rat TRPV1 (rTRPV1) in the presence and absence of ligand have been reported as determined by cryo-EM. rTRPV1 shares 85.7% sequence identity with hTRPV1. In the present work, we constructed and reported the 3D homology tetramer model of hTRPV1 based on the cryo-EM structures of rTRPV1. Molecular dynamics (MD) simulations, energy minimizations, and prescreen were applied to select and validate the best model of hTRPV1. The predicted binding pocket of hTRPV1 consists of two adjacent monomers subunits, which were congruent with the experimental rTRPV1 data and the cyro-EM structures of rTRPV1. The detailed interactions between hTRPV1 and its antagonists or agonists were characterized by molecular docking, which helped us to identify the important residues. Conformational changes of hTRPV1 upon antagonist/agonist binding were also explored by MD simulation. The different movements of compounds led to the different conformational changes of monomers in hTRPV1, indicating that TRPV1 works in a concerted way, resembling some other channel proteins such as aquaporins. We observed that the selective filter was open when hTRPV1 bound with an agonist during MD simulation. For the lower gate of hTRPV1, we observed large similarities between hTRPV1 bound with antagonist and with agonist. A five-point pharmacophore model based on several antagonists was established, and the structural model was used to screen in silico for new antagonists for hTRPV1. By using the 3D TRPV1 structural model above, the pilot in silico screening has begun to yield promising hits with activity as hTRPV1 antagonists, several of which showed substantial potency.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Modelos Moleculares , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Células CHO , Calcio/metabolismo , Línea Celular , Simulación por Computador , Cricetulus , Microscopía por Crioelectrón , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Reproducibilidad de los Resultados , Homología Estructural de Proteína , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA