RESUMEN
Adherence to a healthy diet offers a valuable intervention to compete against the increasing cases of ocular diseases worldwide, such as dry eye disorders, myopia progression, cataracts, glaucoma, diabetic retinopathy, or age macular degeneration. Certain amounts of micronutrients must be daily provided for proper functioning of the visual system, such as vitamins, carotenoids, trace metals and omega-3 fatty acids. Among natural foods, the following have to be considered for boosting eye/vision health: fish, meat, eggs, nuts, legumes, citrus fruits, nuts, leafy green vegetables, orange-colored fruits/vegetables, olives-olive oil, and dairy products. Nutritional supplements have received much attention as potential tools for managing chronic-degenerative ocular diseases. A systematic search of PubMed, Web of Science, hand-searched publications and historical archives were performed by the professionals involved in this study, to include peer-reviewed articles in which natural food, nutrient content, and its potential relationship with ocular health. Five ophthalmologists and two researchers collected the characteristics, quality and suitability of the above studies. Finally, 177 publications from 1983 to 2021 were enclosed, mainly related to natural food, Mediterranean diet (MedDiet) and nutraceutic supplementation. For the first time, original studies with broccoli and tigernut (chufa de Valencia) regarding the ocular surface dysfunction, macular degeneration, diabetic retinopathy and glaucoma were enclosed. These can add value to the diet, counteract nutritional defects, and help in the early stages, as well as in the course of ophthalmic pathologies. The main purpose of this review, enclosed in the Special Issue "Health Benefits and Nutritional Quality of Fruits, Nuts and Vegetables," is to identify directions for further research on the role of diet and nutrition in the eyes and vision, and the potential antioxidant, anti-inflammatory and neuroprotective effects of natural food (broccoli, saffron, tigernuts and walnuts), the Mediterranean Diet, and nutraceutic supplements that may supply a promising and highly affordable scenario for patients at risk of vision loss. This review work was designed and carried out by a multidisciplinary group involved in ophthalmology and ophthalmic research and especially in nutritional ophthalmology.
RESUMEN
Saffron (Crocus sativus L.) has been traditionally used in food preparation and as a medicinal plant. It currently has numerous therapeutic properties attributed to it, such as protection against ischemia, as well as anticonvulsant, antidepressant, anxiolytic, hypolipidemic, anti-atherogenic, anti-hypertensive, antidiabetic, and anti-cancer properties. In addition, saffron has remarkable beneficial properties, such as anti-apoptotic, anti-inflammatory and antioxidant activities, due to its main metabolites, among which crocin and crocetin stand out. Furthermore, increasing evidence underwrites the possible neuroprotective role of the main bioactive saffron constituents in neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, both in experimental models and in clinical studies in patients. Currently, saffron supplementation is being tested for ocular neurodegenerative pathologies, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration and glaucoma, among others, and shows beneficial effects. The present article provides a comprehensive and up to date report of the investigations on the beneficial effects of saffron extracts on the main neurodegenerative ocular pathologies and other ocular diseases. This review showed that saffron extracts could be considered promising therapeutic agents to help in the treatment of ocular neurodegenerative diseases.
RESUMEN
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs). An increase in the intraocular pressure is the principal risk factor for such loss, but controlling this pressure does not always prevent glaucomatous damage. Activation of immune cells resident in the retina (microglia) may contribute to RGC death. Thus, a substance with anti-inflammatory activity may protect against RGC degeneration. This study investigated the neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract standardized to 3% crocin content in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Treatment with saffron extract decreased microglion numbers and morphological signs of their activation, including soma size and process retraction, both in OHT and in contralateral eyes. Saffron extract treatment also partially reversed OHT-induced down-regulation of P2RY12. In addition, the extract prevented retinal ganglion cell death in OHT eyes. Oral administration of saffron extract was able to decrease the neuroinflammation associated with increased intraocular pressure, preventing retinal ganglion cell death. Our findings indicate that saffron extract may exert a protective effect in glaucomatous pathology.