Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 736: 139363, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32485367

RESUMEN

Bioinformatics clustering application for mining of a large set of olive pollen aerobiological data to describe the daily distribution of Olea pollen concentration. The study was performed with hourly pollen concentrations measured during 8 years (2011-2018) in Extremadura (Spain). Olea pollen season by quartiles of the pollen integral in preseason (Q1: 0%-25%), in-season (Q2 and Q3: 25%-75%) and postseason (Q4: 75%-100%). Days with pollen concentrations above 100 grains/m3 were clustered according to the daily distribution of the concentrations. The factors affecting the prevalence of the different clusters were analyzed: distance to olive groves and the moment during the pollen season and the meteorology. During the season, the highest hourly concentrations during the day where between 12:00 and 14:00, while during the preseason the highest hourly concentrations were detected in the afternoon and evening hours. In the postseason the pollen concentrations were more homogeneously distributed during 9-16 h. The representation shows a well-defined hourly pattern during the season, but a more heterogeneous distribution during the preseason and postseason. The cluster dendrogram shows that all the days could be clustered in 6 groups: most of the clusters shows the daily peaks between 11:00 and 15:00 with a smooth curve (Cluster 1 and 3) or with a strong peak (2 and 5). Days included in cluster 9 shows an earlier peak in the morning (before 9:00). On the other hand, cluster 6 shows a peak in the afternoon, after 15:00. Hourly concentrations show a sharper pattern during the season, with the peak during the hours close to the emission. Out of the season, when pollen is expected to come from farther distances, the hourly peak is located later from the emission time of the trees. Significant factors for predicting the hourly pattern were wind speed and direction and the distance to the olive groves.


Asunto(s)
Contaminantes Atmosféricos/análisis , Olea , Alérgenos/análisis , Monitoreo del Ambiente , Polen/química , Estaciones del Año , España
2.
Sci Total Environ ; 693: 133576, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31374505

RESUMEN

Ornamental trees bring benefits for human health, including reducing urban pollution. However, some species, such as plane trees (Platanus sp.), produce allergenic pollen. Consequently, urban maps are a valuable tool for allergic patients and allergists, but they often fail to include variables that contribute to the "building downwash effect", such as the width and shape of streets and the height of buildings. Other factors that directly influence pollen dispersion (slopes and other geographical features) also have not traditionally been discussed. The LiDAR (Laser Imaging Detection and Ranging) technique enables one to consider these variables with high accuracy. This work proposes an Aerobiological Index to create Risk maps for Ornamental Trees (AIROT) and the establishment of potential areas of risk of exposure to Platanus pollen. LiDAR data from five urban areas were used to create the DEM and DSM (Digital Elevation and Surface Models) needed to perform further analysis. GIS software was used to map the points for each city and to create risk maps by Kriging, with stable (3 cases) and exponential function (2 cases) as the optimal models. In short, the AIROT index was a useful tool to map possible biological risks in cities. Since AIROT allows each city to consider its own characteristics, including geographical specifications, by using remote sensing and geostatistics techniques, the establishment of risk maps and healthy itineraries is valuable for allergic patients, allergists, architects and urban planners. This new aerobiological index provides a new decision-making tool related to urban planning and allergenicity assessment.


Asunto(s)
Monitoreo del Ambiente/métodos , Hipersensibilidad/epidemiología , Microbiología del Aire , Alérgenos , Ciudades , Humanos , Polen , Medición de Riesgo/métodos , Análisis Espacial , Árboles
3.
Sci Total Environ ; 676: 407-419, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048171

RESUMEN

Techniques of remote sensing are being used to develop phenological studies. Our goal is to study the correlation among the Normalized Difference Vegetation Index (NDVI) related with oak trees included in three set data polygons (15, 25 and 50 km to aerobiological sampling point as NDVI-15, 25 and 50), and oak (Quercus) daily average pollen counts from 1994 to 2013. The study was developed in the SW Mediterranean region with continuous pollen recording within the mean pollen season of each studied year. These pollen concentrations were compared with NDVI values in the locations containing the vegetation under a study based on two cartographic sources: the Extremadura Forest Map (MFEx) of Spain and the Fifth National Forest Inventory (IFN5) from Portugal. The importance of this work is to propose the relationship among data related in space and time by Spearman and Granger causality tests. 9 out of 20 studied years have shown significant results with the Granger causality test between NDVI and pollen concentration, and in 12 years, significant values were obtained by Spearman test. The distances of influence on the contribution of Quercus pollen to the sampler showed statistically significant results depending on the year. Moreover, a predictive model by using Artificial Neural Network (ANN) was applied with better results in NDVI25 than for NDVI15 or NDVI50. The addition of NDVI25 with the lag of 5 days and some weather parameters in the model was applied with a RMSE of 4.26 (Spearman coefficient r = 0.77) between observed and predicted values. Based on these results, NDVI seems to be a useful parameter to predict airborne pollen.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Modelos Estadísticos , Polen , Quercus , Bosques , Región Mediterránea , Portugal , España
4.
Environ Res ; 174: 160-169, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077991

RESUMEN

The effect of height on pollen concentration is not well documented and little is known about the near-ground vertical profile of airborne pollen. This is important as most measuring stations are on roofs, but patient exposure is at ground level. Our study used a big data approach to estimate the near-ground vertical profile of pollen concentrations based on a global study of paired stations located at different heights. We analyzed paired sampling stations located at different heights between 1.5 and 50 m above ground level (AGL). This provided pollen data from 59 Hirst-type volumetric traps from 25 different areas, mainly in Europe, but also covering North America and Australia, resulting in about 2,000,000 daily pollen concentrations analyzed. The daily ratio of the amounts of pollen from different heights per location was used, and the values of the lower station were divided by the higher station. The lower station of paired traps recorded more pollen than the higher trap. However, while the effect of height on pollen concentration was clear, it was also limited (average ratio 1.3, range 0.7-2.2). The standard deviation of the pollen ratio was highly variable when the lower station was located close to the ground level (below 10 m AGL). We show that pollen concentrations measured at >10 m are representative for background near-ground levels.


Asunto(s)
Monitoreo del Ambiente , Polen , Alérgenos , Australia , Europa (Continente) , Humanos , Estaciones del Año , Manejo de Especímenes
5.
Sci Total Environ ; 663: 527-536, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716644

RESUMEN

Oak pollen seasons are relatively unexplored in large parts of Europe despite producing allergens and being a common tree in both continental and northern parts. Many studies are concentrated only on the Iberian Peninsula. In this study, the seasonal pattern of oak pollen in Europe was analysed using 10 observation sites, ranging from Spain to Sweden. The magnitude of peaks and annual pollen integral together with season-length were studied and substantially higher pollen levels and longer seasons were found in Spain. Two northern sites in Denmark and Sweden showed high oak pollen peaks together with two sites in Spain and United Kingdom. The study also tested four common definitions of season start and applied a generalized phenological model for computing the start of the pollen season. The most accurate definition for a European-wide description of the observed oak pollen start was when the cumulative daily average pollen count reached 50 grains per cubic meter. For the modelling of the start a thermal time method based on Growing Degree Day (GDD) was implemented, utilizing daily temperatures and a generalized approach to identify model parameters applicable to all included sites. GDD values varied between sites and generally followed a decreasing gradient from south to north, with some exceptions. Modelled onsets with base temperatures below 7 °C matched well with observed onsets and 76% of the predictions differed ≤4 days compared to observed onsets when using a base temperature of 2 °C. Base temperatures above 7 °C frequently predicted onsets differing >1 week from the observed. This general approach can be extended to a larger area where pollen observations are non-existent. The presented work will increase the understanding of oak pollen variation in Europe and provide knowledge of its phenology, which is a critical aspect both for modelling purposes on large-scale and assessing the human exposure to oak allergens.


Asunto(s)
Alérgenos/análisis , Monitoreo del Ambiente/métodos , Polen/fisiología , Quercus/fisiología , Europa (Continente) , Modelos Biológicos , Estaciones del Año
6.
Sci Total Environ ; 571: 1037-47, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27443456

RESUMEN

The pollen grains of Quercus spp. (oak trees) are allergenic. This study investigates airborne Quercus pollen in SW Spain with the aim identifying favourable conditions for atmospheric transport and potential sources areas. Two types of Quercus distribution maps were produced. Airborne Quercus pollen concentrations were measured at three sites located in the Extremadura region (SW Spain) for 3 consecutive years. The seasonal occurrence of Quercus pollen in the air was investigated, as well as days with pollen concentrations ≥80Pm(-3). The distance that Quercus pollen can be transported in appreciable numbers was calculated using clusters of back trajectories representing the air mass movement above the source areas (oak woodlands), and by using a state-of-the-art dispersion model. The two main potential sources of Quercus airborne pollen captured in SW Spain are Q. ilex subsp. ballota and Q. suber. The minimum distances between aerobiological stations and Quercus woodlands have been estimated as: 40km (Plasencia), 66km (Don Benito), 62km (Zafra) from the context of this study. Daily mean Quercus pollen concentration can exceed 1,700Pm(-3), levels reached not less than 24 days in a single year. High Quercus pollen concentration were mostly associated with moderate wind speed events (6-10ms(-1)), whereas that a high wind speed (16-20ms(-1)) seems to be associated with low concentrations.


Asunto(s)
Movimientos del Aire , Polen/fisiología , Quercus/fisiología , Alérgenos/análisis , Monitoreo del Ambiente , España
7.
Int J Biometeorol ; 60(10): 1509-1517, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26896182

RESUMEN

The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.


Asunto(s)
Contaminantes Atmosféricos/análisis , Alérgenos/análisis , Modelos Teóricos , Olea , Polen , Predicción , Humedad , Lluvia , Estaciones del Año , España , Temperatura
8.
Int J Biometeorol ; 60(2): 297-306, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26092133

RESUMEN

Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.


Asunto(s)
Contaminantes Atmosféricos/análisis , Alérgenos/análisis , Cupressaceae , Modelos Teóricos , Polen , Predicción , España
9.
Int J Biometeorol ; 58(3): 337-48, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23334443

RESUMEN

This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Alérgenos/análisis , Atmósfera/química , Monitoreo del Ambiente/métodos , Olea/química , Polen/química , Viento , Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Ciudades/estadística & datos numéricos , Clima , Simulación por Computador , Modelos Estadísticos , Portugal , Estaciones del Año , Análisis Espacio-Temporal
10.
Int J Environ Res Public Health ; 6(12): 3169-78, 2009 12.
Artículo en Inglés | MEDLINE | ID: mdl-20049254

RESUMEN

The airborne indoor pollen in a hospital of Badajoz (Spain) was monitored over two years using a personal Burkard sampler. The air was sampled in four places indoors-one closed room and one open ward on each of the ground and the third floors-and one place outdoors at the entrance to the hospital. The results were compared with data from a continuous volumetric sampler. While 32 pollen types were identified, nearly 75% of the total counts were represented by just five of them. These were: Quercus, Cupressaceae, Poaceae, Olea, and Plantago. The average indoor concentration was 25.2 grains/m(3), and the average indoor/outdoor ratio was 0.27. A strong seasonal pattern was found, with the highest levels in spring and winter, and the indoor concentrations were correlated with the outdoor one. Indoor air movement led to great homogeneity in the airborne pollen presence: the indoor results were not influenced by whether or not the room was isolated, the floor level, or the number of people in or transiting the site during sampling. The presence of ornamental vegetation in the area surrounding the building affected the indoor counts directly as sources of the pollen.


Asunto(s)
Contaminación del Aire Interior/estadística & datos numéricos , Alérgenos , Demografía , Polen , Estaciones del Año , Análisis de Varianza , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente , Humanos , España , Estadística como Asunto , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA