Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 8(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581509

RESUMEN

The aim of this study was to develop a phytocosmetic sunscreen emulsion with antioxidant effect, containing a blend of flavonoid-enriched plant extracts. In vitro sun protection factor, antioxidant activity, skin irritation, photostability, cutaneous permeation, and retention of flavonoids were evaluated. Thermodynamically stable emulsions were obtained and tested for sensorial analysis after loading the blend of extracts. The selected emulsion was stable when stored at low temperatures (5 C), for which after 120 days the concentration of quercetin and rutin were above their limit of quantification, i.e., 2.8 ± 0.39 µg/mL and 30.39 ± 0.39 µg/mL, respectively. Spreadability, low rupture strength and adhesiveness were shown to be similar to a conventional topical product. Higher brittleness, pseudo-plastic, and viscoelastic behaviors were also recorded for the developed phytocosmetic sunscreen. The product presented a critical wavelength of 387.0 nm and ultraviolet rays A and B (UVA/UVB) rate of 0.78, confirming that the developed formulation shows capacity for UVA/UVB protection, protecting skin against damages caused by Ultraviolet (UV) radiation. Rutin was shown to permeate the skin barrier and was also quantified in the stratum corneum (3.27 ± 1.92 µg/mL) by tape stripping and retention test (114.68 ± 8.70 µg/mL). The developed flavonoid-enriched phytocosmetic was shown to be non-irritant to skin by an in vitro assay. Our results confirm the antioxidant activity, sun protection, and physical properties of the developed phytocosmetic for topical application.

2.
Polymers (Basel) ; 11(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618858

RESUMEN

Bromelain, a set of proteolytic enzymes potential pharmaceutical applications, was encapsulated in chitosan nanoparticles to enhance enzyme stability, and the effect of different chitosan sources was evaluated. Chitosan types (i.e., low molecular weight chitosan, chitosan oligosaccharide lactate, and chitosan from shrimp shells) produced nanoparticles with different physicochemical properties, however in all cases, particle size and zeta potential decreased, and polydispersity index increased after bromelain addition. Bromelain encapsulation was higher than 84% and 79% for protein content and enzymatic activity, respectively, with low molecular weight chitosan presenting the highest encapsulation efficiency. Nanoparticle suspension was also tested for accelerated stability and rheological behavior. For the chitosan-bromelain nanoparticles, an instability index below 0.3 was recorded and, in general, the loading of bromelain in chitosan nanoparticles decreased the cohesiveness of the final suspension.

3.
AAPS PharmSciTech ; 20(1): 9, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30560393

RESUMEN

The aim of study was to determine the in vitro sun protection factor (SPF) and the photostability profile of a topical formulation composed of nanoparticles loaded with vegetable extracts and to assess its physicochemical properties. Chitosan/tripolyphosphate (TPP) nanoparticles loaded with flavonoids-enriched vegetable extracts (Ginkgo biloba L., Dimorphandra mollis Benth, Ruta graveolens, and Vitis vinifera L.) were produced and characterized for their morphology, mean particle size, zeta potential, and encapsulation efficiency. A final topical formulation was obtained by dispersing chitosan/TPP nanoparticles in an o/w emulsion. Results showed that nanoparticles dispersion exhibited yellowish color, spherical shape, and uniform appearance. Extract-loaded chitosan/TPP nanoparticles showed a mean particle size of 557.11 ± 3.1 nm, polydispersity index of 0.39 ± 0.27, zeta potential of + 11.54 ± 2.1 mV, and encapsulation efficiency of 75.89% of rutin. The recorded texture parameters confirm that the developed formulation is appropriate for skin application. The SPF obtained was 2.3 ± 0.4, with a critical wavelength of 387.0 nm and 0.69 UVA/UVB ratio. The developed formulation exhibited photostability, allowing the release of flavonoids from nanoparticles while retaining rutin into the skin in a higher extension.


Asunto(s)
Flavonoides/química , Extractos Vegetales/química , Factor de Protección Solar , Quitosano/análogos & derivados , Quitosano/química , Estabilidad de Medicamentos , Emulsiones/química , Ginkgo biloba , Nanopartículas/química , Tamaño de la Partícula , Extractos Vegetales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA