Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067505

RESUMEN

The treatment of dermatophytoses, the most common human fungal infections, requires new alternatives. The aim of this study was to determine the antidermatophytic activity of the aqueous Azorean Black Tea extract (ABT), together with an approach to the mechanisms of action. The phytochemical analysis of ABT extract was performed by HPLC. The dermatophytes susceptibility was assessed using a broth microdilution assay; potential synergies with terbinafine and griseofulvin were evaluated by the checkerboard assay. The mechanism of action was appraised by the quantification of the fungal cell wall chitin and ß-1,3-glucan, and by membrane ergosterol. The presence of ultrastructural modifications was studied by Transmission Electron Microscopy (TEM). The ABT extract contained organic and phenolic acids, flavonoids, theaflavins and alkaloids. It showed an antidermatophytic effect, with MIC values of 250 µg/mL for Trichophyton mentagrophytes, 125 µg/mL for Trichophyton rubrum and 500 µg/mL for Microsporum canis; at these concentrations, the extract was fungicidal. An additive effect of ABT in association to terbinafine on these three dermatophytes was observed. The ABT extract caused a significant reduction in ß-1,3-glucan content, indicating the synthesis of this cell wall component as a possible target. The present study identifies the antidermatophytic activity of the ABT and highlights its potential to improve the effectiveness of conventional topical treatment currently used for the management of skin or mucosal fungal infections.


Asunto(s)
Arthrodermataceae , Camellia sinensis , Fungicidas Industriales , Micosis , Humanos , Antifúngicos/química , Terbinafina/farmacología , , Pruebas de Sensibilidad Microbiana , Fungicidas Industriales/farmacología , Extractos Vegetales/farmacología , Micosis/tratamiento farmacológico , Trichophyton
2.
Plants (Basel) ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447064

RESUMEN

Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, ß-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.

3.
Food Funct ; 9(12): 6187-6195, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30457140

RESUMEN

In the present work, we explored the antifungal activity of the wild edible seaweed Osmundea pinnatifida (Rhodophyta) collected from the Portuguese coast, which is used as a food seasoning in Scotland, Ireland and Portugal. We performed a sequential extraction of the seaweed components with methanol, dichloromethane and n-hexane. These extracts showed an antifungal activity against Alternaria infectoria and Aspergillus fumigatus. The n-hexane fraction of the seaweed inhibited the sporulation of Alternaria infectoria at 30 µg mL-1 and induced a statistically significant (P < 0.001) decrease in ß-glucan content. Furthermore, liquid cultures of Aspergillus fumigatus supplemented with 10 µg mL-1 of the n-hexane fraction showed abnormal conidiophores, completely devoid of phialides and conidia associated with a decrease of 18.3% in the chitin content (P < 0.01). The n-hexane fraction analysis by GC-MS revealed that it includes palmitic acid (29.6%), phytol isomer 1 (12.8%), oleic acid (9.6%), stearic acid (6.2%) and d-(-)-tagatofuranose (4.1%), among other compounds present at lower concentrations. The present study reveals Osmundea pinnatifida as a promising source of biologically active compounds inhibiting fungal growth and conidiation, the main dispersal mechanism of filamentous fungi as Aspergillus fumigatus and Alternaria alternata, revealing its utility both as an environmental fungicide against fungal diseases and as a food preservative against fungal post-harvest food contamination.


Asunto(s)
Aditivos Alimentarios/farmacología , Fungicidas Industriales/farmacología , Extractos Vegetales/farmacología , Rhodophyta/química , Algas Marinas/química , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/crecimiento & desarrollo , Aditivos Alimentarios/química , Fungicidas Industriales/química , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Verduras/química
4.
Front Microbiol ; 8: 498, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424663

RESUMEN

Endodontic biofilms eradication from the infected root canal system remains as the primary focus in endodontic field. In this study, it was assessed the efficacy of antimicrobial Photodynamic Therapy (aPDT) with the Zn(II)chlorin e6 methyl ester (Zn(II)e6Me) activated by red light against monospecies and mixed biofilms of Enterococcus faecalis and Candida albicans. The results were compared with the ones obtained with Rose Bengal (RB), Toluidine Blue-O (TBO), the synthetic tetracationic porphyrin (TMPyP) as well as classical endodontic irrigants (3% NaOCl, 17% EDTA and 2% CHX). The antimicrobial efficacy of aPDT toward monospecies and mixed biofilms was quantified resorting to safranin red method. The changes of biofilm organization and of cellular ultrastructure were evaluated through several microscopy techniques (light, laser confocal and transmission electron microscopy). Zn(II)e6Me once activated with light for 60 or 90 s was able to remove around 60% of the biofilm's biomass. It was more efficient than TBO and RB and showed similar efficiency to TMPyP and classical irrigants, CHX and EDTA. As desirable in a PS, Zn(II)e6Me in the dark showed smaller activity than TMPyP. Only NaOCl revealed higher efficiency, with 70-90% of the biofilm's biomass removal. The organization of biofilms and the normal microbial cell ultrastructure were extensively damaged by the presence of Zn(II)e6Me. aPDT with Zn(II)e6Me showed to be an efficient antimicrobial strategy deserving further studies leading to a future clinical usage in endodontic disinfection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA