Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Healthc Mater ; 11(20): e2201084, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35943173

RESUMEN

Photothermal therapy (PTT) represents a promising modality for tumor control typically using infrared light-responsive nanoparticles illuminated by a wavelength-matched external laser. However, due to the constraints of light penetration, PTT is generally restricted to superficially accessible tumors. With the goal of extending the benefits of PTT to all tumor settings, interstitial PTT (I-PTT) is evaluated by the photothermal activation of intratumorally administered Prussian blue nanoparticles with a laser fiber positioned interstitially within the tumor. This interstitial fiber, which is fitted with a terminal diffuser, distributes light within the tumor microenvironment from the "inside-out" as compared to from the "outside-in" traditionally observed during superficially administered PTT (S-PTT). I-PTT improves the heating efficiency and heat distribution within a target treatment area compared to S-PTT. Additionally, I-PTT generates increased cytotoxicity and thermal damage at equivalent thermal doses, and elicits immunogenic cell death at lower thermal doses in targeted neuroblastoma tumor cells compared to S-PTT. In vivo, I-PTT induces significantly higher long-term tumor regression, lower rates of tumor recurrence, and improved long-term survival in multiple syngeneic murine models of neuroblastoma. This study highlights the significantly enhanced therapeutic benefit of I-PTT compared to traditional S-PTT as a promising treatment modality for solid tumors.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Neuroblastoma , Ratones , Animales , Fototerapia , Terapia Fototérmica , Línea Celular Tumoral , Neuroblastoma/terapia , Neuroblastoma/patología , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
2.
Biomater Sci ; 7(5): 1875-1887, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30789175

RESUMEN

We describe the synthesis of CpG oligodeoxynucleotide-coated Prussian blue nanoparticles (CpG-PBNPs) that function as a nanoimmunotherapy for neuroblastoma, a common childhood cancer. These CpG-PBNPs increase the antigenicity and adjuvanticity of the treated tumors, ultimately driving robust antitumor immunity through a multi-pronged mechanism. CpG-PBNPs are synthesized using a facile layer-by-layer coating scheme resulting in nanoparticles that exhibit monodisperse size distributions and multiday stability without cytotoxicity. The strong intrinsic absorption of PBNPs in the CpG-PBNPs enables ablative photothermal therapy (CpG-PBNP-PTT) that triggers tumor cell death, as well as the release of tumor antigens to increase antigenicity. Simultaneously, the CpG coating functions as an exogenous molecular adjuvant that complements the endogenous adjuvants released by the CpG-PBNP-PTT (e.g. ATP, calreticulin, and HMGB1). In cell culture, coating NPs with CpG increases immunogenicity while maintaining the photothermal activity of PBNPs. When administered in a syngeneic, Neuro2a-based, murine model of neuroblastoma, CpG-PBNP-PTT results in complete tumor regression in a significantly higher proportion (70% at 60 days) of treated animals relative to controls. Furthermore, the long-term surviving, CpG-PBNP-PTT-treated animals reject Neuro2a rechallenge, suggesting that this therapy generates immunological memory. Our findings point to the importance of simultaneous cytotoxicity, antigenicity, and adjuvanticity to generate robust and persistent antitumor immune responses against neuroblastoma.


Asunto(s)
Ferrocianuros/química , Ferrocianuros/inmunología , Nanopartículas/química , Neuroblastoma/patología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Concentración de Iones de Hidrógeno , Ratones , Neuroblastoma/inmunología , Oligodesoxirribonucleótidos/química , Fototerapia
3.
Small ; 14(20): e1800678, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29665282

RESUMEN

A thermal "window" of immunogenic cell death (ICD) elicited by nanoparticle-based photothermal therapy (PTT) in an animal model of neuroblastoma is described. In studies using Prussian blue nanoparticles to administer photothermal therapy (PBNP-PTT) to established localized tumors in the neuroblastoma model, it is observed that PBNP-PTT conforms to the "more is better" paradigm, wherein higher doses of PBNP-PTT generates higher cell/local heating and thereby more cell death, and consequently improved animal survival. However, in vitro analysis of the biochemical correlates of ICD (ATP, high-motility group box 1, and calreticulin) elicited by PBNP-PTT demonstrates that PBNP-PTT triggers a thermal window of ICD. ICD markers are highly expressed within an optimal temperature (thermal dose) window of PBNP-PTT (63.3-66.4 °C) as compared with higher (83.0-83.5 °C) and lower PBNP-PTT (50.7-52.7 °C) temperatures, which both yield lower expression. Subsequent vaccination studies in the neuroblastoma model confirm the in vitro findings, wherein PBNP-PTT administered within the optimal temperature window results in long-term survival (33.3% at 100 d) compared with PBNP-PTT administered within the higher (0%) and lower (20%) temperature ranges, and controls (0%). The findings demonstrate a tunable immune response to heat generated by PBNP-PTT, which should be critically engaged in the administration of PTT for maximizing its therapeutic benefits.


Asunto(s)
Hipertermia Inducida , Neuroblastoma/patología , Fototerapia , Animales , Muerte Celular , Línea Celular Tumoral , Femenino , Ferrocianuros/química , Humanos , Ratones , Nanopartículas/química , Vacunación
4.
Int J Nanomedicine ; 12: 6413-6424, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919744

RESUMEN

Theranostic nanoparticles offer the potential for mixing and matching disparate diagnostic and therapeutic functionalities within a single nanoparticle for the personalized treatment of diseases. In this article, we present composite iron oxide-gadolinium-containing Prussian blue nanoparticles (Fe3O4@GdPB) as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy (PTT) of tumors. These particles combine the well-described properties and safety profiles of the constituent Fe3O4 nanoparticles and gadolinium-containing Prussian blue nanoparticles. The Fe3O4@GdPB nanoparticles function both as effective MRI contrast agents and PTT agents as determined by characterizing studies performed in vitro and retain their properties in the presence of cells. Importantly, the Fe3O4@GdPB nanoparticles function as effective MRI contrast agents in vivo by increasing signal:noise ratios in T1-weighted scans of tumors and as effective PTT agents in vivo by decreasing tumor growth rates and increasing survival in an animal model of neuroblastoma. These findings demonstrate the potential of the Fe3O4@GdPB nanoparticles to function as effective theranostic agents.


Asunto(s)
Medios de Contraste/química , Ferrocianuros/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Fototerapia/métodos , Animales , Medios de Contraste/uso terapéutico , Femenino , Compuestos Férricos/química , Gadolinio/química , Humanos , Magnetismo , Ratones Endogámicos , Nanopartículas/uso terapéutico , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/tratamiento farmacológico , Fototerapia/instrumentación , Relación Señal-Ruido , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Nanomedicine ; 13(2): 771-781, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27826115

RESUMEN

We describe "photothermal immunotherapy," which combines Prussian blue nanoparticle (PBNP)-based photothermal therapy (PTT) with anti-CTLA-4 checkpoint inhibition for treating neuroblastoma, a common, hard-to-treat pediatric cancer. PBNPs exhibit pH-dependent stability, which makes them suitable for intratumorally-administered PTT. PBNP-based PTT is able to lower tumor burden and prime an immune response, specifically an increased infiltration of lymphocytes and T cells to the tumor area, which is complemented by the antitumor effects of anti-CTLA-4 immunotherapy, providing a more durable treatment against neuroblastoma in an animal model. We observe 55.5% survival in photothermal immunotherapy-treated mice at 100days compared to 12.5%, 0%, 0%, and 0% survival in mice receiving: anti-CTLA-4 alone, PBNPs alone, PTT alone, and no treatment, respectively. Additionally, long-term surviving, photothermal immunotherapy-treated mice exhibit protection against neuroblastoma rechallenge, suggesting the development of immunity against these tumors. Our findings suggest the potential of photothermal immunotherapy in improving treatments for neuroblastoma.


Asunto(s)
Inmunoterapia/métodos , Nanopartículas , Neuroblastoma/terapia , Fototerapia , Animales , Antígeno CTLA-4/inmunología , Colorantes/química , Ratones , Nanomedicina , Linfocitos T
6.
Sci Rep ; 6: 37035, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27833160

RESUMEN

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive tumors with low survival rates and the leading cause of death in neurofibromatosis type 1 (NF1) patients under 40 years old. Surgical resection is the standard of care for MPNSTs, but is often incomplete and can generate loss of function, necessitating the development of novel treatment methods for this patient population. Here, we describe a novel combination therapy comprising MEK inhibition and nanoparticle-based photothermal therapy (PTT) for MPNSTs. MEK inhibitors block activity driven by Ras, an oncogene constitutively activated in NF1-associated MPNSTs, while PTT serves as a minimally invasive method to ablate cancer cells. Our rationale for combining these seemingly disparate techniques for MPNSTs is based on several reports demonstrating the efficacy of systemic chemotherapy with local PTT. We combine the MEK inhibitor, PD-0325901 (PD901), with Prussian blue nanoparticles (PBNPs) as PTT agents, to block MEK activity and simultaneously ablate MPNSTs. Our data demonstrate the synergistic effect of combining PD901 with PBNP-based PTT, which converge through the Ras pathway to generate apoptosis, necrosis, and decreased proliferation, thereby mitigating tumor growth and increasing survival of MPNST-bearing animals. Our results suggest the potential of this novel local-systemic combination "nanochemotherapy" for treating patients with MPNSTs.


Asunto(s)
Benzamidas/uso terapéutico , Difenilamina/análogos & derivados , Hipertermia Inducida/métodos , Rayos Infrarrojos/uso terapéutico , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Nanopartículas/uso terapéutico , Neurilemoma/terapia , Neurofibromatosis 1 , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Benzamidas/farmacología , Línea Celular Tumoral , Difenilamina/farmacología , Difenilamina/uso terapéutico , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Ferrocianuros , Terapia por Láser/métodos , Ratones , Nanopartículas/efectos de la radiación , Proteínas de Neoplasias/antagonistas & inhibidores , Neurilemoma/tratamiento farmacológico , Neurilemoma/genética , Neurofibromatosis 1/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Resonancia por Plasmón de Superficie
7.
Nanomedicine (Lond) ; 11(14): 1759-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27389189

RESUMEN

AIM: To engineer a novel nanoimmunotherapy comprising Prussian blue nanoparticles (PBNPs) conjugated to antigen-specific cytotoxic T lymphocytes (CTL), which leverages PBNPs for their photothermal therapy (PTT) capabilities and Epstein-Barr virus (EBV) antigen-specific CTL for their ability to traffic to and destroy EBV antigen-expressing target cells. MATERIALS & METHODS: PBNPs and CTL were independently biofunctionalized. Subsequently, PBNPs were conjugated onto CTL using avidin-biotin interactions. The resultant cell-nanoparticle construct (CTL:PBNPs) were analyzed for their physical, phenotypic and functional properties. RESULTS: Both PBNPs and CTL maintained their intrinsic physical, phenotypic and functional properties within the CTL:PBNPs. CONCLUSION: This study highlights the potential of our CTL:PBNPs nanoimmunotherapy as a novel therapeutic for treating virus-associated malignancies such as EBV+ cancers.


Asunto(s)
Colorantes/uso terapéutico , Infecciones por Virus de Epstein-Barr/terapia , Ferrocianuros/uso terapéutico , Herpesvirus Humano 4/inmunología , Nanopartículas/uso terapéutico , Neoplasias/terapia , Neoplasias/virología , Linfocitos T Citotóxicos/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/virología , Técnicas de Cocultivo , Colorantes/química , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Ferrocianuros/química , Humanos , Inmunoterapia , Células Jurkat , Activación de Linfocitos , Nanomedicina , Nanopartículas/química , Neoplasias/inmunología , Fototerapia , Linfocitos T Citotóxicos/química
8.
J Vis Exp ; (98): e52621, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25993028

RESUMEN

Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs)--a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.


Asunto(s)
Colorantes/química , Ferrocianuros/química , Imagen Molecular/métodos , Nanopartículas/química , Animales , Línea Celular Tumoral , Colorantes/síntesis química , Medios de Contraste/síntesis química , Medios de Contraste/química , Colorantes Fluorescentes/química , Gadolinio/química , Humanos , Imagen por Resonancia Magnética/métodos , Manganeso/química , Ratones , Imagen Multimodal/métodos , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA