Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 15: 747229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776851

RESUMEN

The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.

2.
Neurotox Res ; 38(3): 824-832, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32696437

RESUMEN

Cocaine (COC) is a psychostimulant that acts by increasing catecholaminergic neurotransmission mainly due to its effects on the dopamine transporter (DAT). However, other neurotransmitter systems may also be regulated by COC, including the GABAergic system. Since the effect of COC in modulating gamma-aminobutyric acid (GABA) reuptake is not defined, we investigated the molecular mechanisms related to the increase in GABA uptake induced by acute COC exposure and its effects on locomotor activity in adolescent mice. Behavioral experiments showed that COC increased locomotor activity and decreased immobilization time in mice. A single COC exposure reduced both GABA uptake and GAT-1 protein levels. On the other hand, cyclic adenosine monophosphate (cAMP) levels increased after a COC challenge. The major changes induced by acute COC on behavioral and neurochemical assays were avoided by previous treatment with the selective D1 receptor antagonist SCH-23390 (0.5 mg/kg). Our findings suggest that GABA uptake naturally decreases during mice development from preadolescence until adulthood and that dopamine (DA) D1-like receptors are key players in the regulation of GABA uptake levels following a single COC exposure in adolescent mice.


Asunto(s)
Cocaína/farmacología , Dopamina/metabolismo , Lóbulo Frontal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/efectos de los fármacos , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/administración & dosificación , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Lóbulo Frontal/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
3.
Neurotox Res ; 30(3): 367-79, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27083155

RESUMEN

Carnosic acid (CA; C20H28O4) is a phenolic diterpene found in rosemary (Rosmarinus officinalis L.) and exhibits protective properties, e.g., antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. In this context, CA has been viewed as a neuroprotective agent due to its ability in rescuing neuronal cells from pro-oxidant and pro-apoptotic challenges. In the present work, we found that CA pretreatment at 1 µM for 12 h suppressed the mitochondria-related pro-oxidant and mitochondria-dependent pro-apoptotic effects of chlorpyrifos (CPF) in human neuroblastoma SH-SY5Y cells. CA prevented mitochondrial membrane potential disruption and decreased the levels of oxidative stress markers in mitochondrial membranes obtained from cells exposed to CPF. CA also inhibited cytochrome c release and activation of the caspases-9 and -3, as well as decreased DNA fragmentation, in CPF-treated cells. CA upregulated the content of glutathione (GSH) in mitochondria by a mechanism involving the activation of the phosphoinositide-3-kinase (PI3K)/Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, since inhibition of PI3K/Akt or silencing of Nrf2 using siRNA strategy abolished the protection exerted by CA in SH-SY5Y cells. Therefore, CA protected mitochondria of SH-SY5Y cells through the activation of the PI3K/Akt/Nrf2 axis, causing upregulation of the mitochondrial GSH content and consequent antioxidant and anti-apoptotic effects.


Asunto(s)
Abietanos/farmacología , Antioxidantes/farmacología , Cloropirifos/toxicidad , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citocromos c/metabolismo , Fragmentación del ADN/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/patología , Mitocondrias/fisiología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño
4.
Mol Neurobiol ; 50(3): 1124-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24691544

RESUMEN

Hereditary fructose intolerance is an autosomal recessive disorder characterized by the accumulation of fructose in tissues and biological fluids of patients. The disease results from a deficiency of aldolase B, responsible for metabolizing fructose in the liver, kidney, and small intestine. We investigated the effect of acute fructose administration on oxidative stress and neuroinflammatory parameters in the cerebral cortex of 30-day-old Wistar rats. Animals received subcutaneous injection of sodium chloride (0.9 %) (control group) or fructose solution (5 µmol/g) (fructose group). One hour later, the animals were euthanized and the cerebral cortex was isolated. Oxidative stress (levels of thiobarbituric acid-reactive substances (TBA-RS), carbonyl content, nitrate and nitrite levels, 2',7'-dihydrodichlorofluorescein (DCFH) oxidation, glutathione (GSH) levels, as well as the activities of catalase (CAT) and superoxide dismutase (SOD)) and neuroinflammatory parameters (TNF-α, IL-1ß, and IL-6 levels and myeloperoxidase (MPO) activity) were investigated. Acute fructose administration increased levels of TBA-RS and carbonyl content, indicating lipid peroxidation and protein damage. Furthermore, SOD activity increased, whereas CAT activity was decreased. The levels of GSH, nitrate, and nitrite and DCFH oxidation were not altered by acute fructose administration. Finally, cytokines IL-1ß, IL-6, and TNF-α levels, as well as MPO activity, were not altered. Our present data indicate that fructose provokes oxidative stress in the cerebral cortex, which induces oxidation of lipids and proteins and changes of CAT and SOD activities. It seems therefore reasonable to propose that antioxidants may serve as an adjuvant therapy to diets or to other pharmacological agents used for these patients, to avoid oxidative damage to the brain.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Citocinas/metabolismo , Fructosa/farmacología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Catalasa/metabolismo , Corteza Cerebral/metabolismo , Glutatión/metabolismo , Peroxidasa/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA