Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 28(14): 17228-17243, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33394452

RESUMEN

The increased use of pharmaceutical and personal care products (PPCPs) has contributed to the contamination of water systems and put pressure on the development of new techniques to deal with this problem. Acetaminophen (paracetamol), a common analgesic and antipyretic drug, and caffeine, a known central nervous system stimulant, are being used frequently by many people and found in large amounts in wastewater systems. In this work, their removal, by photocatalytic degradation, was promoted using magnetic nanoparticles (NPs) based on iron oxides. Besides being obtained from cheap and plentiful source, the magnetic properties of these NPs provide an easy way to separate them from the solution when the reaction is complete. Three types of hematite-based NPs, one pure (1) and two of them composed by a magnetite core partially (2) or completely (3) covered by a hematite shell, were synthesized and characterized. Sample 2 was the best photocatalyst for both pollutants' photo-assisted degradation. Under UV-vis irradiation and using a 0.13 g catalyst/L solution, the total acetaminophen and caffeine degradation (20 ppm/150 mL) was achieved in 45 min and 60 min, respectively. The identification of some of the intermediate products was carried out by liquid chromatography in combination with electrospray ionization mass spectrometry. A complementary Density Functional Theory (DFT) study revealed the relative stability of several species formed during the acetaminophen and caffeine degradation processes and gave some insight about the most favorable degradation pathways.


Asunto(s)
Nanopartículas de Magnetita , Contaminantes Químicos del Agua , Acetaminofén , Cafeína , Catálisis , Compuestos Férricos , Óxido Ferrosoférrico , Humanos , Cinética , Titanio , Contaminantes Químicos del Agua/análisis
2.
J Mater Chem B ; 8(6): 1256-1265, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31960003

RESUMEN

Sustainably made, flexible and biocompatible composites, having environmentally friendly compositions and multifunctional capabilities, are promising materials for several emerging biomedical applications. Here, the development of flexible and multifunctional chitosan-based bionanocomposites with a mixed reduced graphene oxide-iron oxide (rGO-Fe3-xO4) filler is described. The filler is prepared by one-pot synthesis, ensuring good dispersibility of the Fe3-xO4 nanoparticles and rGO within the chitosan matrix during solvent casting. The resulting bionanocomposites present superparamagnetic response at room temperature. The antioxidant activity is 9 times higher than that of pristine chitosan. The mechanical properties of the films can be tuned from elastic (∼8 MPa) chitosan films to stiff (∼285 MPa) bionanocomposite films with 50% filler. The magnetic hyperthermia tests showed a temperature increase of 40 °C in 45 s for the 50% rGO-Fe3-xO4 film. Furthermore, the composites have no cytotoxicity to the nontumorigenic (HaCat) cell line, which confirms their biocompatibility and highlights the potential of these materials for biomedical applications, such as hyperthermia treatments.


Asunto(s)
Antioxidantes/química , Materiales Biocompatibles/química , Quitosano/química , Hipertermia Inducida , Línea Celular , Supervivencia Celular/efectos de los fármacos , Compuestos Férricos/química , Grafito/química , Humanos , Tamaño de la Partícula , Solubilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA