Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 84(14): 582-592, 2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-33825664

RESUMEN

Styrax camporum Pohl, a typical species from the Brazilian cerrado, commonly known as "benjoeiro", is used to treat gastroduodenal diseases. In previous studies carried out by our research group, hydroalcoholic extract of S. camporum stems (SCHE) exhibited antigenotoxic and antiproliferative effects. For a comparative analysis of the chemopreventive effect of SCHE, the aim of this study was to investigate the influence of SCHE against carcinogen 1,2-dimethylhydrazine (DMH)-induced DNA damage and pre-neoplastic lesions in Wistar rat colon. Animals were treated orally with SCHE at 250, 500 or 1000 mg/kg body weight in conjunction with a subcutaneous injection of DMH. DNA damage was assessed using the comet assay while tpre-neoplastic lesions by aberrant crypt foci (ACF) assay. The following hepatic oxidative stress markers were determined including activities of catalase (CAT) and glutathione S-transferase (GST) as well as levels of reduced glutathione (GSH) and malondialdehyde (MDA). Treatment with SCHE was not genotoxic or carcinogenic at the highest dose tested (1000 mg/kg b.w.). The extract effectively inhibited DNA damage and pre-neoplastic lesions induced by DMH administration at all concentrations tested. Measurement of CAT, and GST activities and levels of GSH showed that SCHE did not reduce oxidative processes. In contrast, treatment with SCHE (1000 mg/kg b.w.) decreased liver MDA levels. Taken together, these findings suggested the chemopreventive effect attributed to SCHE in colon carcinogenesis, may be related to its capacity to inhibit DNA damage as well as an antioxidant action associated with its chemical constituents egonol and homoegonol.


Asunto(s)
Anticarcinógenos/farmacología , Daño del ADN/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Styrax/química , Animales , Carcinógenos/farmacología , Carcinógenos/toxicidad , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Ensayo Cometa , Dimetilhidrazinas/farmacología , Dimetilhidrazinas/toxicidad , Masculino , Extractos Vegetales/química , Tallos de la Planta/química , Sustancias Protectoras/química , Ratas , Ratas Wistar
2.
J Toxicol Environ Health A ; 79(24): 1201-1210, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27767392

RESUMEN

The aim of this study was to examine the cytotoxic and genotoxic potential of a hydroethanolic extract of Schefflera vinosa (SV), a plant with schistosomicidal activity, as well as its influence on DNA damage induced by different mutagens, methyl methane sulfonate (MMS) and hydrogen peroxide (H2O2), in V79 cells and Swiss mice. Schefflera vinosa extract produced cytotoxicity at concentrations of 312.5 µg/ml or higher using the XTT cell proliferation assay kit. Treatment of V79 cell cultures with the highest SV concentration tested (150 µg/ml) significantly increased the frequency of micronuclei (MN) compared to controls. All SV concentrations significantly reduced the frequency of MN induced by hydrogen peroxide in V79 cell cultures. Further, SV was able to scavenge free radicals in the DPPH assay. In the in vivo test system, treatment with the highest dose tested (1,000 mg/kg body weight) induced a significant rise in frequency of DNA damage using the comet assay. However, animals treated with different doses of SV demonstrated absence of genotoxicity in the bone marrow MN test. For assessment of modulatory effects, the lower concentration of SV (250 mg/kg body weight) administered to MMS-treated mice significantly reduced frequency of DNA damage compared to the positive control (MMS alone). In contrast, the highest concentration tested (1,000 mg/kg body weight) significantly increased the rate of MN induced by MMS. The lack of genotoxic damage at biologically relevant SV concentrations, as well as the SV-mediated antigenotoxic and antioxidant activities, indicate the potential therapeutic usefulness of this plant extract. These activities may be attributed, at least in part, to the flavonoid quercitrin, its major component.


Asunto(s)
Araliaceae/química , Citotoxinas/toxicidad , Daño del ADN/efectos de los fármacos , Mutágenos/toxicidad , Extractos Vegetales/toxicidad , Animales , Células CHO , Ensayo Cometa , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/farmacología , Masculino , Metilmetanosulfonato/farmacología , Ratones , Pruebas de Micronúcleos , Mutágenos/farmacología , Oxidación-Reducción
3.
Fitoterapia ; 112: 211-6, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27316976

RESUMEN

Many studies have reported that medicinal plant extracts can inhibit oral pathogen growth or adhesion to surfaces and therefore reduce dental caries formation. The addition of these extracts to oral products like mouthwashes and dentifrices is considered an important strategy in caries control. In this sense, we have developed a Mikania glomerata extract with high ent-kaurenoic acid content (KAMg). So, this work describes the preparation of such extract and the development of a validated HPLC-DAD method to determine its ent-kaurenoic acid (KA) content. Herein it is also described the KAMg in vitro antibacterial evaluation against several cariogenic bacteria in comparison with KA and the investigation of further aspects of the KAMg activity. Toxicological aspects of the developed extract were evaluated by assessing its cytotoxicity and genotoxicity. KA and a KA-rich extract like KAMg showed to inhibit the growth of microorganisms responsible for dental caries at relatively low MIC (Minimum inhibitory concentration) values, albeit not as low as the MIC value obtained for chlorhexidine digluconate (CHD), the golden anticariogenic standard approved by the American Dental Association Council on Dental Therapeutics. However, KAMg was more effective to inhibit the formation of a Streptococcus mutans biofilm with four times lower MICB50 (minimum inhibitory concentration that reduces 50% of the biofilm) value as compared with CHD. Taking into account all these data and considering the absence of genotoxic and cytotoxic activity under the tested conditions, it is suggested that KAMg is a natural product to be considered as active ingredient in oral care products.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Diterpenos/farmacología , Mikania/química , Streptococcus mutans/efectos de los fármacos , Animales , Caries Dental/microbiología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Pruebas de Toxicidad
4.
PLoS One ; 9(11): e111999, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25405606

RESUMEN

The fruits of Solanum lycocarpum, known as wolf-fruit, are used in folk medicine, and because of that we have evaluated both the genotoxic potential of its glycoalkaloidic extract (SL) and its influence on the genotoxicity induced by methyl methanesulfonate. Furthermore, the potential blocking effect of SL intake in the initial stage of colon carcinogenesis in Wistar rats was investigated in a short-term (4-week) bioassay using aberrant crypt foci (ACF) as biomarker. The genotoxic potential was evaluated using the Swiss mice peripheral blood micronucleus test. The animals were treated with different doses of SL (15, 30 and 60 mg/kg b.w.) for 14 days, and the peripheral blood samples were collected at 48 h, 7 days and 14 days after starting the treatment. For antigenotoxicity assessment, MMS was administered on the 14th day, and after 24 h the harvesting of bone marrow and liver cells was performed, for the micronucleus and comet assays, respectively. In the ACF assay, male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg b.w.), twice a week, during two weeks to induce ACF. The treatment with SL (15, 30 and 60 mg/kg b.w.) was given for four weeks during and after carcinogen treatment to investigate the potential beneficial effects of SL on DMH-induced ACF. The results demonstrated that SL was not genotoxic in the mouse micronucleus test. In animals treated with SL and MMS, the frequencies of micronucleus and extensions of DNA damage were significantly reduced in comparison with the animals receiving only MMS. Regarding the ACF assay, SL significantly reduced the frequency of ACF induced by DMH.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Daño del ADN , Frutas/química , Extractos Vegetales/farmacología , Solanum/química , Focos de Criptas Aberrantes/tratamiento farmacológico , Alcaloides/aislamiento & purificación , Alcaloides/uso terapéutico , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Masculino , Ratones , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA