Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 12(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138074

RESUMEN

Maternal high-fat (HF) is associated with offspring hyperphagia and obesity. We hypothesized that maternal HF alters fetal neuroprogenitor cell (NPC) and hypothalamic arcuate nucleus (ARC) development with preferential differentiation of neurons towards orexigenic (NPY/AgRP) versus anorexigenic (POMC) neurons, leading to offspring hyperphagia and obesity. Furthermore, these changes may involve hypothalamic bHLH neuroregulatory factors (Hes1, Mash1, Ngn3) and energy sensor AMPK. Female mice were fed either a control or a high fat (HF) diet prior to mating, and during pregnancy and lactation. HF male newborns were heavier at birth and exhibited decreased protein expression of hypothalamic bHLH factors, pAMPK/AMPK and POMC with increased AgRP. As adults, these changes persisted though with increased ARC pAMPK/AMPK. Importantly, the total NPY neurons were increased, which was consistent with the increased food intake and adult fat mass. Further, NPCs from HF newborn hypothalamic tissue showed similar changes with preferential NPC neuronal differentiation towards NPY. Lastly, the role of AMPK was further confirmed with in vitro treatment of Control NPCs with pharmacologic AMPK modulators. Thus, the altered ARC development of HF offspring results in excess appetite and reduced satiety leading to obesity. The underlying mechanism may involve AMPK/bHLH pathways.


Asunto(s)
Animales Recién Nacidos/metabolismo , Dieta Alta en Grasa/efectos adversos , Hiperfagia/etiología , Fenómenos Fisiologicos Nutricionales Maternos , Obesidad/etiología , Efectos Tardíos de la Exposición Prenatal/etiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Apetito/fisiología , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo , Embarazo , Saciedad/fisiología
2.
Nitric Oxide ; 76: 81-86, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29551532

RESUMEN

INTRODUCTION: COMP-4 is a natural compound-based dietary supplement consisting of the combination of ginger, Paullinia cupana, muira puama and l-citrulline, which when given long-term has been shown in the aged rat to a) upregulate iNOS in the penile smooth muscle cells (SMC), b) reverse the corporal SMC apoptosis and fibrosis associated with corporal veno-occlusive dysfunction (CVOD), and c) improve resulting erectile function. To elucidate the mechanism of how COMP-4 and its individual components modulate the iNOS-cGMP pathway, an in vitro study was conducted using a rat corporal primary SMC culture to determine its effect on NOS, soluble guanylate cyclase (sGC), cGMP and the phosphodiesterase 5 enzyme (PDE5). MATERIALS AND METHODS: Primary SMC cultures using the explant technique were initiated by cutting small pieces of corporal tissue from 8 week old Sprague-Dawley rats. The SMC were grown in Dulbecco media with 20% fetal calf serum. The SMC were then incubated with or without COMP-4 (0.69 mg/ml) or its ingredients alone (ginger: 0.225 mg/ml; muira puama, Paullinia cupana and l-citrulline each at 0.9 mg/ml) for up to 24 h mRNA and protein were extracted and used for the determination of NOS, sGC and PDE5 content. cGMP content was determined by ELISA. L-NIL (4 µM) was used as an inhibitor of iNOS activity. RESULTS: Compared to the control values, COMP-4 upregulated expression of cGMP by 85%, induced a 42 fold increase in sGC as well as a 15 fold increase in both iNOS protein and mRNA content while it decreased both PDE5 mRNA and protein content each by about 50%. L-NIL completely inhibited the effect of COMP-4 on cGMP production. When compared with each of the individual four components of COMP-4, it appears that COMP-4 itself had the most profound effect in modulating each one the specific steps within the iNOS-cGMP pathway. CONCLUSIONS: This in vitro study demonstrates that COMP-4 is capable of activating the endogenous cellular iNOS-cGMP pathway within the CSM cells, which is theorized to be responsible for reducing the fibrosis and apoptosis as well as the CVOD observed in the aging rat penis. Further studies will be necessary in order to determine whether supplementation of COMP-4 on a daily basis may be beneficial in halting or reversing this aging related erectile dysfunction in the clinical setting.


Asunto(s)
Citrulina/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Olacaceae/química , Paullinia/química , Pene/efectos de los fármacos , Zingiber officinale/química , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Citrulina/administración & dosificación , Citrulina/química , GMP Cíclico/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Pene/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Endocr Connect ; 6(3): 139-150, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28174253

RESUMEN

Skeletal muscle wasting is a serious disorder associated with health conditions such as aging, chronic kidney disease and AIDS. Vitamin D is most widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance. Recently, vitamin D supplementation has been shown to improve muscle performance and reduce the risk of falls in vitamin D deficient older adults. However, little is known of the underlying molecular mechanism(s) or the role it plays in myogenic differentiation. We examined the effect of 1,25-D3 on myogenic cell differentiation in skeletal muscle derived stem cells. Primary cultures of skeletal muscle satellite cells were isolated from the tibialis anterior, soleus and gastrocnemius muscles of 8-week-old C57/BL6 male mice and then treated with 1,25-D3 The efficiency of satellite cells isolation determined by PAX7+ cells was 81%, and they expressed VDR. Incubation of satellite cells with 1,25-D3 induces increased expression of: (i) MYOD, (ii) MYOG, (iii) MYC2, (iv) skeletal muscle fast troponin I and T, (v) MYH1, (vi) IGF1 and 2, (vii) FGF1 and 2, (viii) BMP4, (ix) MMP9 and (x) FST. It also promotes myotube formation and decreases the expression of MSTN. In conclusion, 1,25-D3 promoted a robust myogenic effect on satellite cells responsible for the regeneration of muscle after injury or muscle waste. This study provides a mechanistic justification for vitamin D supplementation in conditions characterized by loss of muscle mass and also in vitamin D deficient older adults with reduced muscle mass and strength, and increased risk of falls.

4.
Andrology (Los Angel) ; 4(1)2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26405615

RESUMEN

AIMS: Aging associated erectile dysfunction is characterized within the corpora by a progressive apoptosis of the smooth muscle cells and their replacement by collagen. Nitric oxide from iNOS has been shown to inhibit these histological changes in the corpora while PDE5 inhibitors as well as certain nutraceuticals such as ginger, paullinia cupana, muira puama and L-citrulline are known to enhance the effects of NO. We evaluated whether the daily oral administration for 2 months with a combination of ginger, paullinia cupana, muira puama and L-citrulline (COMP-4) can effectively delay the ongoing corporal fibrosis, smooth muscle cell apoptosis and cavernosal veno-occlusive dysfunction (CVOD) seen in middle aged rats similar to that seen with tadalafil. METHODS: 10 Month old Fisher 344 rats were treated or not for two months with COMP-4, tadalafil or a combination of tadalafil plus COMP-4. CVOD was determined by dynamic infusion cavernosometry. Penile sections of the corpora cavernosa were subjected to Masson trichrome staining to evaluate fibrosis and immunohistochemistry for desmin as a marker of smooth muscle content and inducible nitric oxide synthase (iNOS) followed by image analysis. Oxidative stress levels were determined by GSH/GSSG ratio in whole blood. RESULTS: a decline in the non-treated rat's erectile function is evident by 10-12 months of age and is accompanied by a decrease in the corporal smooth muscle content determined by desmin expression and an increase in corporal fibrosis. The daily treatment for two months with COMP-4 reverses this process by reducing systemic oxidative stress and increasing desmin and iNOS expression, similar to that seen with tadalafil or the combination of COMP-4 plus tadalafil. CONCLUSION: An oral combination of ginger, muira puama, Paullinia cupana and L-citrulline seems to be as effective as daily PDE5 inhibitor therapy in either delaying or reversing the onset of the histological and functional characteristics of aging related erectile dysfunction.

5.
J Comp Neurol ; 458(1): 46-61, 2003 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-12577322

RESUMEN

Control of penile erection requires the coordination of the hypothalamus and the L6-S1 region of the spinal cord. Erection requires the activation of neuronal nitric oxide synthase (nNOS), which is tightly regulated. Because variants of nNOS (penile nNOS: PnNOS) and the N-methyl-D-aspartate receptor (truncated NMDAR subunit 1: NMDAR1-T) as well as protein inhibitor of NOS (PIN) have all been located in the pelvic ganglia and penile nerves, this work aims to determine whether these proteins are also present in the hypothalamus. It was found that PnNOS, the brain-type nNOS, and PIN, were expressed in the hypothalamus. In contrast, NMDAR1-T was expressed only in the penis, whereas the brain-type NMDAR1 was present in the brain and sacral spinal cord and not in the penis. PnNOS was found in the media preoptic area, posterior magnocellular, and the parvocellular regions of the paraventricular nucleus, supraoptic nucleus, septohypothalamic nucleus, medial septum, cortex, and in some of the nNOS staining neurons throughout the brain. It was absent in the organum vasculosum of the lamina terminalis. PIN staining was present in neurons of the medial preoptic area, paraventricular nucleus, medial septum, and cortex, but not in the supraoptic nucleus, septohypothalamic nucleus, or organum vasculosum of the lamina terminalis. Colocalization between PnNOS and PIN was found in the medial preoptic area, medial septum, and cortex, and less in the paraventricular nucleus. PnNOS and oxytocin were colocalized in the paraventricular nucleus and supraoptic nucleus. In hypothalamic extracts, recombinant PIN-GST protein bound to PnNOS in the extracts and partially inhibited NOS activity. These results indicate that both nNOS variants, and their respective regulatory proteins are present and colocalize in the hypothalamic and spinal cord regions involved in penile erection.


Asunto(s)
Proteínas Portadoras/análisis , Proteínas de Drosophila , Hipotálamo/química , Óxido Nítrico Sintasa/análisis , Erección Peniana , Pene/inervación , Receptores de N-Metil-D-Aspartato/análisis , Médula Espinal/química , Animales , Química Encefálica , Dineínas , Inhibidores Enzimáticos/análisis , Hipotálamo/enzimología , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/análisis , Óxido Nítrico Sintasa de Tipo I , ARN Mensajero/análisis , Ratas , Médula Espinal/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA