Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35483783

RESUMEN

The genotoxicity of nano-structured synthetic amorphous silica (SAS), a common food additive, was investigated in vivo in rats. A 90-day oral toxicity study was performed according to OECD test guideline 408 and the genotoxicity of pyrogenic SAS nanomaterial NM-203 was assessed in several organs, using complementary tests. Adult Sprague-Dawley rats of both sexes were treated orally for 90 days with 0, 2, 5, 10, 20, or 50 mg SAS/kg bw per day. Dose levels were selected to approximate expected human dietary exposures to SAS. DNA strand breaks were evaluated by the comet assay in blood, bone marrow, liver, and spleen according to OECD test guideline 489; mutations induced in bone marrow precursors of erythrocytes were assessed by the Pig-a assay and chromosome/ genome damage by the micronucleus assay in blood (OECD test guideline 474) and colon. No treatment-related increases of gene (Pig-a) or chromosome/genome (micronucleus) mutations were detected in the blood. The percentage of micronucleated cells was not increased in the colon of treated rats. Among the organs analyzed by the comet assay, the spleen was the only target showing a weak but biologically relevant genotoxic effect.


Asunto(s)
Daño del ADN , Dióxido de Silicio , Animales , Ensayo Cometa , Femenino , Masculino , Pruebas de Micronúcleos , Ratas , Ratas Sprague-Dawley , Dióxido de Silicio/toxicidad
2.
Toxicol In Vitro ; 78: 105257, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34688838

RESUMEN

Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 µg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.


Asunto(s)
Aluminio/toxicidad , Daño del ADN , Nanopartículas del Metal/toxicidad , Cloruro de Aluminio/toxicidad , Óxido de Aluminio/toxicidad , Células CACO-2 , Línea Celular , Ensayo Cometa , Hepatocitos/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Pruebas de Micronúcleos , Estrés Oxidativo
3.
Sci Rep ; 10(1): 2698, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060369

RESUMEN

The knowledge about a potential in vivo uptake and subsequent toxicological effects of aluminum (Al), especially in the nanoparticulate form, is still limited. This paper focuses on a three day oral gavage study with three different Al species in Sprague Dawley rats. The Al amount was investigated in major organs in order to determine the oral bioavailability and distribution. Al-containing nanoparticles (NMs composed of Al0 and aluminum oxide (Al2O3)) were administered at three different concentrations and soluble aluminum chloride (AlCl3·6H2O) was used as a reference control at one concentration. A microwave assisted acid digestion approach followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis was developed to analyse the Al burden of individual organs. Special attention was paid on how the sample matrix affected the calibration procedure. After 3 days exposure, AlCl3·6H2O treated animals showed high Al levels in liver and intestine, while upon treatment with Al0 NMs significant amounts of Al were detected only in the latter. In contrast, following Al2O3 NMs treatment, Al was detected in all investigated organs with particular high concentrations in the spleen. A rapid absorption and systemic distribution of all three Al forms tested were found after 3-day oral exposure. The identified differences between Al0 and Al2O3 NMs point out that both, particle shape and surface composition could be key factors for Al biodistribution and accumulation.


Asunto(s)
Aluminio/farmacología , Disponibilidad Biológica , Nanoestructuras/química , Distribución Tisular/efectos de los fármacos , Administración Oral , Aluminio/química , Cloruro de Aluminio/química , Cloruro de Aluminio/farmacología , Óxido de Aluminio/química , Óxido de Aluminio/farmacología , Animales , Humanos , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos
4.
Nanotoxicology ; 13(7): 909-922, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30938204

RESUMEN

Aluminum (Al) can be ingested from food and released from packaging and can reach key organs involved in human metabolism, including the liver via systemic distribution. Recent studies discuss the occurrence of chemically distinct Al-species and their interconversion by contact with biological fluids. These Al species can vary with regard to their intestinal uptake, systemic transport, and therefore could have species-specific effects on different organs and tissues. This work aims to assess the in vitro hepatotoxic hazard potential of three different relevant Al species: soluble AlCl3 and two nanoparticulate Al species were applied, representing for the first time an investigation of metallic nanoparticles besides to mineral bound γ-Al2O3 on hepatic cell lines. To investigate the uptake and toxicological properties of the Al species, we used two different human hepatic cell lines: HepG2 and differentiated HepaRG cells. Cellular uptake was determined by different methods including light microscopy, transmission electron microscopy, side-scatter analysis, and elemental analysis. Oxidative stress, mitochondrial dysfunction, cell death mechanisms, and DNA damage were monitored as cellular parameters. While cellular uptake into hepatic cell lines occurred predominantly in the particle form, only ionic AlCl3 caused cellular effects. Since it is known, that Al species can convert one into another, and mechanisms including 'trojan-horse'-like uptake can lead to an Al accumulation in the cells. This could result in the slow release of Al ions, for which reason further hazard cannot be excluded. Therefore, individual investigation of the different Al species is necessary to assess the toxicological potential of Al particles.


Asunto(s)
Cloruro de Aluminio/toxicidad , Óxido de Aluminio/toxicidad , Daño del ADN , Hígado/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Cloruro de Aluminio/metabolismo , Óxido de Aluminio/metabolismo , Transporte Biológico , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/metabolismo , Microscopía Electrónica de Transmisión
5.
Langmuir ; 33(40): 10726-10735, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28903564

RESUMEN

Aluminum has gathered toxicological attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum-containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the single-particle mode were employed to characterize two aluminum-containing nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments.

6.
Mutat Res ; 652(1): 65-71, 2008 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-18282792

RESUMEN

Microcystin-LR (MC-LR), involved in human and animal poisonings by cyanobacteria, has been shown to be both a potent tumour promoter in rat liver and an inhibitor of serine/threonine protein phosphatases, specifically PP1 and PP2A. The research on the genotoxic potential of MC-LR counts only few in vivo studies. In order to determine the target organs for DNA-damage induction by MC-LR, the single-cell gel electrophoresis (SCGE) or comet assay was performed in mice. Following a single oral administration of 2 and 4mg/kg bw of MC-LR, a statistically significant induction of DNA damage in blood cells was obtained after 3h. However, after an intra-peritoneal injection (ip), DNA lesions were mainly induced in the liver, but were also reported in the kidney, the intestine and the colon. The sensitivity of the ip route compared to the oral route suggested a difference in the bio-disponibility of the toxin. In any case, DNA damage was induced by MC-LR irrespective of the administration route. Among the target organs, the DNA damage induced in the intestinal tissues (ileum and colon) may contribute to an increased cancer risk.


Asunto(s)
Ensayo Cometa , Daño del ADN , Microcistinas/administración & dosificación , Microcistinas/toxicidad , Administración Oral , Animales , ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Inyecciones Intraperitoneales , Toxinas Marinas/administración & dosificación , Toxinas Marinas/toxicidad , Ratones , Cola (estructura animal)/efectos de los fármacos , Cola (estructura animal)/metabolismo , Cola (estructura animal)/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA