Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Medicinas Tradicionales
Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Gerontol A Biol Sci Med Sci ; 78(3): 397-406, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342748

RESUMEN

Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.


Asunto(s)
Acarbosa , Sirolimus , Ratones , Femenino , Humanos , Masculino , Animales , Sirolimus/farmacología , Acarbosa/farmacología , Envejecimiento , Longevidad , Rendimiento Físico Funcional
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077177

RESUMEN

Hemodialysis patients (HDPs) have higher blood pressure, higher levels of inflammation, a higher risk of cardiovascular disease, and unusually low plasma n-3 polyunsaturated fatty acid (PUFA) levels compared to healthy subjects. The objective of our investigation was to examine the levels of endocannabinoids (eCBs) and oxylipins (OxLs) in female HDPs compared to healthy matched female controls, with the underlying hypothesis that differences in specific PUFA levels in hemodialysis patients would result in changes in eCBs and OxLs. Plasma phospholipid fatty acids were analyzed by gas chromatography. Plasma was extracted and analyzed using ultra-performance liquid chromatography followed by electrospray ionization and tandem MS for eCBs and OxLs. The global untargeted metabolite profiling of plasma was performed by GCTOF MS. Compared to the controls, HDPs showed lower levels of plasma EPA and the associated OxL metabolites 5- and 12-HEPE, 14,15-DiHETE, as well as DHA derived 19(20)-EpDPE. Meanwhile, no changes in arachidonylethanolamide or 2-arachidonylglycerol in the open circulation were detected. Higher levels of multiple N-acylethanolamides, monoacylglycerols, biomarkers of progressive kidney disease, the nitric oxide metabolism-linked citrulline, and the uremic toxins kynurenine and creatine were observed in HDP. These metabolic differences in cCBs and OxLs help explain the severe inflammatory and cardiovascular disease manifested by HDPs, and they should be explored in future studies.


Asunto(s)
Enfermedades Cardiovasculares , Ácidos Grasos Omega-3 , Enfermedades Cardiovasculares/etiología , Endocannabinoides , Ácidos Grasos , Ácidos Grasos Insaturados , Femenino , Humanos , Oxilipinas , Diálisis Renal
3.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682720

RESUMEN

Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable. Using a mouse model of maternal Western-style diet (WD), we previously showed that pyrroloquinoline quinone (PQQ), a potent dietary antioxidant, protected offspring of WD-fed dams from development of NAFLD and NASH. Here, we used untargeted mass spectrometry-based lipidomics to delineate lipotoxic effects of WD on offspring liver and identify lipid targets of PQQ. PQQ exposure during pregnancy altered hepatic lipid profiles of WD-exposed offspring, upregulating peroxisome proliferator-activated receptor (PPAR) α signaling and mitochondrial fatty acid oxidation to markedly attenuate triglyceride accumulation beginning in utero. Surprisingly, the abundance of very long-chain ceramides, important in promoting gut barrier and hepatic function, was significantly elevated in PQQ-treated offspring. PQQ exposure reduced the hepatic phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio in WD-fed offspring and improved glucose tolerance. Notably, levels of protective n - 3 polyunsaturated fatty acids (PUFAs) were elevated in offspring exposed to PQQ, beginning in utero, and the increase in n - 3 PUFAs persisted into adulthood. Our findings suggest that PQQ supplementation during gestation and lactation augments pathways involved in the biosynthesis of long-chain fatty acids and plays a unique role in modifying specific bioactive lipid species critical for protection against NAFLD risk in later life.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedad del Hígado Graso no Alcohólico , Adulto , Animales , Niño , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Longevidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , PPAR alfa/metabolismo , Cofactor PQQ/farmacología , Embarazo
4.
Obes Sci Pract ; 7(3): 339-345, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34123401

RESUMEN

Obesity is considered as a risk factor for COVID-19 with insulin resistance and increased production of inflammatory cytokines as likely mechanisms. Glucagon-like peptide-1 (GLP-1) agonists and inhaled nitric oxide are proposed therapeutic approaches to treat COVID-19 because of their broad anti-inflammatory effects. One approach that might augment GLP-1 levels would be dietary supplementation with L-arginine. Beyond cytokines, multiple studies have started to investigate the relationship between new-onset diabetes and COVID-19. In a posthoc analysis of a randomized, placebo-controlled human clinical trial of L-arginine supplementation in people with asthma and predominantly with obesity, the results showed that 12 weeks of continuous L-arginine supplementation significantly decreased the level of IL-21 (p = 0.02) and increased the level of insulin (p = 0.02). A high arginine level and arginine/ADMA ratio were significantly associated with lower CCL-20 and TNF-α levels. The study also showed that L-arginine supplementation reduces cytokine levels and improves insulin deficiency or resistance, both are two big risk factors for COVID-19 severity and mortality. Given its safety profile and ease of accessibility, L-arginine is an attractive potential therapeutic option that allows for a cost-effective way to improve outcomes in patients. An expedition of further investigation or clinical trials to test these hypotheses is needed.

5.
Cancer Prev Res (Phila) ; 14(6): 619-626, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33707173

RESUMEN

Grape seed procyanidin extract (GSE) has been shown to exert antineoplastic properties in preclinical studies. Recently, we reported findings from a modified phase I, open-label, dose escalation clinical study conducted to evaluate the safety, tolerability, MTD, and potential chemopreventive effects of leucoselect phytosome, a standardized GSE complexed with soy phospholipids to enhance bioavailability, in heavy active and former smokers. Three months of leucoselect phytosome treatment significantly decreased bronchial Ki-67 labeling index (LI), a marker of cell proliferation on the bronchial epithelium. Because GSE is widely used as a supplement to support cardiovascular health, we evaluate the impact of oral leucoselect phytosome on the fasting serum complex lipid metabolomics profiles in our participants. One month of leucoselect phytosome treatment significantly increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the omega-3 polyunsaturated fatty acids (n-3 PUFA) with well-established anticancer properties. Leucoselect phytosome also significantly increased unsaturated phosphatidylcholines (PC), likely from soy phospolipids in the phytosome and functioning as transporters for these PUFAs. Furthermore, 3-month leucoselect phytosome treatment significantly increased serum prostaglandin (PG) E3 (PGE3), a metabolite of EPA with anti-inflammatory and antineoplastic properties. Such increases in PGE3 correlated with reductions of bronchial Ki-67 LI (r = -0.9; P = 0.0374). Moreover, posttreatment plasma samples from trial participants significantly inhibited proliferation of human lung cancer cell lines A549 (adenocarcinoma), H520 (squamous cell carcinoma), DMS114 (small cell carcinoma), and 1198 (preneoplastic cell line). Our findings further support the potential utility of leucoselect phytosome in reducing cardiovascular and neoplastic risks in heavy former and active smokers. PREVENTION RELEVANCE: In this correlative study of leucoselect phytosome for lung cancer chemoprevention in heavy active and former smokers, we demonstrate for the first time, favorable modulations of n-3PUFA and downstream PGE3 in fasting serum, further supporting the chemopreventive potential of leucoselect phytosome against lung cancer.


Asunto(s)
Extracto de Semillas de Uva/administración & dosificación , Neoplasias Pulmonares/prevención & control , Administración Oral , Alprostadil/análogos & derivados , Alprostadil/sangre , Alprostadil/metabolismo , Bronquios/patología , Línea Celular Tumoral , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/sangre , Ácido Eicosapentaenoico/metabolismo , Extracto de Semillas de Uva/efectos adversos , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resultado del Tratamiento
6.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L770-L784, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33624555

RESUMEN

Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.


Asunto(s)
Reprogramación Celular , Hipoxia Fetal/fisiopatología , Feto/fisiopatología , Hipoxia/fisiopatología , Metaboloma , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Arteria Pulmonar/fisiopatología , Altitud , Animales , Calcio , Femenino , Edad Gestacional , Embarazo , Ovinos
7.
Nature ; 584(7820): 304-309, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32581365

RESUMEN

The human GABAB receptor-a member of the class C family of G-protein-coupled receptors (GPCRs)-mediates inhibitory neurotransmission and has been implicated in epilepsy, pain and addiction1. A unique GPCR that is known to require heterodimerization for function2-6, the GABAB receptor has two subunits, GABAB1 and GABAB2, that are structurally homologous but perform distinct and complementary functions. GABAB1 recognizes orthosteric ligands7,8, while GABAB2 couples with G proteins9-14. Each subunit is characterized by an extracellular Venus flytrap (VFT) module, a descending peptide linker, a seven-helix transmembrane domain and a cytoplasmic tail15. Although the VFT heterodimer structure has been resolved16, the structure of the full-length receptor and its transmembrane signalling mechanism remain unknown. Here we present a near full-length structure of the GABAB receptor, captured in an inactive state by cryo-electron microscopy. Our structure reveals several ligands that preassociate with the receptor, including two large endogenous phospholipids that are embedded within the transmembrane domains to maintain receptor integrity and modulate receptor function. We also identify a previously unknown heterodimer interface between transmembrane helices 3 and 5 of both subunits, which serves as a signature of the inactive conformation. A unique 'intersubunit latch' within this transmembrane interface maintains the inactive state, and its disruption leads to constitutive receptor activity.


Asunto(s)
Microscopía por Crioelectrón , Receptores de GABA-B/química , Receptores de GABA-B/ultraestructura , Calcio/metabolismo , Etanolaminas/química , Etanolaminas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA-B/metabolismo , Relación Estructura-Actividad
8.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32497023

RESUMEN

BACKGROUNDDysregulation of l-arginine metabolism has been proposed to occur in patients with severe asthma. The effects of l-arginine supplementation on l-arginine metabolite profiles in these patients are unknown. We hypothesized that individuals with severe asthma with low fractional exhaled nitric oxide (FeNO) would have fewer exacerbations with the addition of l-arginine to their standard asthma medications compared with placebo and would demonstrate the greatest changes in metabolite profiles.METHODSParticipants were enrolled in a single-center, crossover, double-blind l-arginine intervention trial at UCD. Subjects received placebo or l-arginine, dosed orally at 0.05 mg/kg (ideal body weight) twice daily. The primary end point was moderate asthma exacerbations. Longitudinal plasma metabolite levels were measured using mass spectrometry. A linear mixed-effect model with subject-specific intercepts was used for testing treatment effects.RESULTSA cohort of 50 subjects was included in the final analysis. l-Arginine did not significantly decrease asthma exacerbations in the overall cohort. Higher citrulline levels and a lower arginine availability index (AAI) were associated with higher FeNO (P = 0.005 and P = 2.51 × 10-9, respectively). Higher AAI was associated with lower exacerbation events. The eicosanoid prostaglandin H2 (PGH2) and Nα-acetyl-l-arginine were found to be good predictors for differentiating clinical responders and nonresponders.CONCLUSIONSThere was no statistically significant decrease in asthma exacerbations in the overall cohort with l-arginine intervention. PGH2, Nα-acetyl-l-arginine, and the AAI could serve as predictive biomarkers in future clinical trials that intervene in the arginine metabolome.TRIAL REGISTRATIONClinicalTrials.gov NCT01841281.FUNDINGThis study was supported by NIH grants R01HL105573, DK097154, UL1 TR001861, and K08HL114882. Metabolomics analysis was supported in part by a grant from the University of California Tobacco-Related Disease Research Program program (TRDRP).


Asunto(s)
Arginina/análogos & derivados , Asma/tratamiento farmacológico , Suplementos Dietéticos , Espiración/efectos de los fármacos , Adolescente , Arginina/metabolismo , Arginina/farmacología , Citrulina/metabolismo , Método Doble Ciego , Espiración/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(11): 6075-6085, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123074

RESUMEN

MicroRNA-31 (miR-31) is overexpressed in esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary Zn deficiency and inflammation. In a Zn deficiency-promoted rat ESCC model with miR-31 up-regulation, cancer-associated inflammation, and a high ESCC burden following N-nitrosomethylbenzylamine (NMBA) exposure, systemic antimiR-31 delivery reduced ESCC incidence from 85 to 45% (P = 0.038) and miR-31 gene knockout abrogated development of ESCC (P = 1 × 10-6). Transcriptomics, genome sequencing, and metabolomics analyses in these Zn-deficient rats revealed the molecular basis of ESCC abrogation by miR-31 knockout. Our identification of EGLN3, a known negative regulator of nuclear factor κB (NF-κB), as a direct target of miR-31 establishes a functional link between oncomiR-31, tumor suppressor target EGLN3, and up-regulated NF-κB-controlled inflammation signaling. Interaction among oncogenic miR-31, EGLN3 down-regulation, and inflammation was also documented in human ESCCs. miR-31 deletion resulted in suppression of miR-31-associated EGLN3/NF-κB-controlled inflammatory pathways. ESCC-free, Zn-deficient miR-31-/- rat esophagus displayed no genome instability and limited metabolic activity changes vs. the pronounced mutational burden and ESCC-associated metabolic changes of Zn-deficient wild-type rats. These results provide conclusive evidence that miR-31 expression is necessary for ESCC development.


Asunto(s)
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , MicroARNs/metabolismo , Neoplasias Experimentales/genética , Animales , Carcinógenos/toxicidad , Línea Celular Tumoral , Suplementos Dietéticos , Neoplasias Esofágicas/inducido químicamente , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/prevención & control , Carcinoma de Células Escamosas de Esófago/inducido químicamente , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/prevención & control , Esófago/patología , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , FN-kappa B/metabolismo , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/patología , Neoplasias Experimentales/prevención & control , Nitrosaminas/toxicidad , Ratas , Ratas Transgénicas , Transducción de Señal/genética , Zinc/administración & dosificación , Zinc/deficiencia
10.
BMC Plant Biol ; 19(1): 114, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909879

RESUMEN

BACKGROUND: Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS: Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS: In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/metabolismo , Marrubium/metabolismo , Proteínas de Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Flores/genética , Flores/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidroxilación , Isomerismo , Marrubium/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Nicotiana/genética
11.
G3 (Bethesda) ; 9(3): 807-816, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30679248

RESUMEN

Ferula assafoetida is a medicinal plant of the Apiaceae family that has traditionally been used for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type phenylpropanoid metabolism have thus far remained uncharacterized in F. assafoetida Comparative de novo transcriptome analysis of roots, leaves, stems, and flowers was combined with computational annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis. Gene network analysis showed a high abundance of predicted terpenoid- and phenylpropanoid-metabolic pathway genes in flowers. These findings offer a deeper insight into natural product biosynthesis in F. assafoetida and provide genomic resources for exploiting the medicinal potential of this rare plant.


Asunto(s)
Cumarinas/metabolismo , Ferula/genética , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Terpenos/metabolismo , Ferula/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
12.
Biomed Chromatogr ; 33(2): e4395, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30242859

RESUMEN

Centella asiatica has been used as a culinary vegetable or medicinal herb. In this study, the hepatoprotective effect of the standardized extract of C. asiatica (ECa233) in rotenone-treated rats was examined using a GC-MS-based metabolomic approach. ECa233 contains >80% triterpenoids with a ratio of madecassoside to asiaticoside of 1.5(±0.5):1. Rats were randomly divided into three groups (with six rats/group): sham negative control, rotenone positive control and the ECa233 test group. Rats in the ECa233 group received 10 mg/kg ECa233 orally for 20 days, followed by 2.5 mg/kg intraperitoneal rotenone injection to induce toxicity before being sacrificed. Metabolomic analysis showed that supplementation of ECa233 protected rat liver against rotenone toxicity. Pipecolinic acid was one of the most important metabolites; its level was decreased in the rotenone group as compared with the control. Supplementation with ECa233 before administration of rotenone raised pipecolinic acid to levels intermediate between controls and rotenone alone. The metabolomics approach also helped discover a possible new genuine epimetabolite in the present work. Antioxidant tests revealed that ECa233 inhibited lipid peroxidation and increased catalase activities in liver tissue.


Asunto(s)
Antioxidantes/farmacología , Hígado/efectos de los fármacos , Metaboloma/efectos de los fármacos , Extractos Vegetales/farmacología , Rotenona/toxicidad , Triterpenos/farmacología , Animales , Centella , Cromatografía de Gases y Espectrometría de Masas , Insecticidas/toxicidad , Hígado/química , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
13.
Proc Natl Acad Sci U S A ; 115(47): E11091-E11100, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397150

RESUMEN

Prostate cancer is a leading cause of cancer death in men over 50 years of age, and there is a characteristic marked decrease in Zn content in the malignant prostate cells. The cause and consequences of this loss have thus far been unknown. We found that in middle-aged rats a Zn-deficient diet reduces prostatic Zn levels (P = 0.025), increases cellular proliferation, and induces an inflammatory phenotype with COX-2 overexpression. This hyperplastic/inflammatory prostate has a human prostate cancer-like microRNA profile, with up-regulation of the Zn-homeostasis-regulating miR-183-96-182 cluster (fold change = 1.41-2.38; P = 0.029-0.0003) and down-regulation of the Zn importer ZIP1 (target of miR-182), leading to a reduction of prostatic Zn. This inverse relationship between miR-182 and ZIP1 also occurs in human prostate cancer tissue, which is known for Zn loss. The discovery that the Zn-depleted middle-aged rat prostate has a metabolic phenotype resembling that of human prostate cancer, with a 10-fold down-regulation of citric acid (P = 0.0003), links citrate reduction directly to prostatic Zn loss, providing the underlying mechanism linking dietary Zn deficiency with miR-183-96-182 overexpression, ZIP1 down-regulation, prostatic Zn loss, and the resultant citrate down-regulation, changes mimicking features of human prostate cancer. Thus, dietary Zn deficiency during rat middle age produces changes that mimic those of human prostate carcinoma and may increase the risk for prostate cancer, supporting the need for assessment of Zn supplementation in its prevention.


Asunto(s)
Adenocarcinoma/patología , Proteínas de Transporte de Catión/metabolismo , Próstata/patología , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , Zinc/deficiencia , Adenocarcinoma/genética , Animales , Proliferación Celular , Ácido Cítrico/metabolismo , Dieta , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/biosíntesis , Hiperplasia Prostática/genética , Neoplasias de la Próstata/genética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal/genética , Transcripción Genética/genética , Células Tumorales Cultivadas , Zinc/metabolismo
14.
Curr Biol ; 28(14): 2348-2355.e9, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30017480

RESUMEN

The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual.


Asunto(s)
Dieta/historia , Momias , Arqueología , Austria , Grasas de la Dieta , Grano Comestible , Historia Antigua , Humanos , Italia , Masculino , Carne
15.
JCI Insight ; 3(6)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29563342

RESUMEN

Using an untargeted metabolomics approach in initial (N = 99 subjects) and replication cohorts (N = 1,162), we discovered and structurally identified a plasma metabolite associated with cardiovascular disease (CVD) risks, N6,N6,N6-trimethyl-L-lysine (trimethyllysine, TML). Stable-isotope-dilution tandem mass spectrometry analyses of an independent validation cohort (N = 2,140) confirmed TML levels are independently associated with incident (3-year) major adverse cardiovascular event risks (hazards ratio [HR], 2.4; 95% CI, 1.7-3.4) and incident (5-year) mortality risk (HR, 2.9; 95% CI, 2.0-4.2). Genome-wide association studies identified several suggestive loci for TML levels, but none reached genome-wide significance; and d9(trimethyl)-TML isotope tracer studies confirmed TML can serve as a nutrient precursor for gut microbiota-dependent generation of trimethylamine (TMA) and the atherogenic metabolite trimethylamine N-oxide (TMAO). Although TML was shown to be abundant in both plant- and animal-derived foods, mouse and human fecal cultures (omnivores and vegans) showed slow conversion of TML to TMA. Furthermore, unlike chronic dietary choline, TML supplementation in mice failed to elevate plasma TMAO or heighten thrombosis potential in vivo. Thus, TML is identified as a strong predictor of incident CVD risks in subjects and to serve as a dietary precursor for gut microbiota-dependent generation of TMAO; however, TML does not appear to be a major microbial source for TMAO generation in vivo.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Lisina/análogos & derivados , Metabolómica , Metilaminas/metabolismo , Nutrientes/metabolismo , Anciano , Animales , Aterosclerosis/metabolismo , Carnitina , Colesterol/metabolismo , Colina , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Humanos , Lisina/sangre , Lisina/genética , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Factores de Riesgo , Trombosis
16.
Sci Rep ; 7(1): 12488, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970503

RESUMEN

Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity-C18 epoxide and diol oxylipins.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Hepatomegalia/etiología , Obesidad/etiología , Oxilipinas/metabolismo , Aceite de Soja/efectos adversos , Animales , Aceite de Coco/administración & dosificación , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Dieta con Restricción de Grasas/métodos , Grasas de la Dieta/efectos adversos , Ácidos Grasos Omega-3/clasificación , Ácidos Grasos Omega-6/clasificación , Perfilación de la Expresión Génica , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patología , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metaboloma/genética , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Oxilipinas/clasificación , Proteoma/genética , Proteoma/metabolismo
17.
J Nutr ; 147(10): 1839-1849, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794205

RESUMEN

BACKGROUND: The specific metabolomic perturbations that occur in vitamin B-12 deficiency, and their associations with neurological function, are not well characterized. OBJECTIVE: We sought to characterize the human serum metabolome in subclinical vitamin B-12 deficiency and repletion. METHODS: A before-and-after treatment study provided 1 injection of 10 mg vitamin B-12 (with 100 mg pyridoxine and 100 mg thiamin) to 27 community-dwelling elderly Chileans (∼74 y old) with vitamin B-12 deficiency, as evaluated with serum vitamin B-12, total plasma homocysteine (tHcy), methylmalonic acid (MMA), and holotranscobalamin. The combined indicator of vitamin B-12 status (cB-12) was computed. Targeted metabolites [166 acylcarnitines, amino acids, sugars, glycerophospholipids, and sphingolipids (liquid chromatography-tandem mass spectrometry)], and untargeted metabolites [247 chemical entities (gas chromatography time-of-flight mass spectrometry)] were measured at baseline and 4 mo after treatment. A peripheral nerve score was developed. Differences before and after treatment were examined. For targeted metabolomics, the data from 18 individuals with adequate vitamin B-12 status (selected from the same population) were added to the before-and-after treatment data set. Network visualizations and metabolic pathways are illustrated. RESULTS: The injection increased serum vitamin B-12, holotranscobalamin, and cB-12 (P < 0.001), and reduced tHcy and serum MMA (P < 0.001). Metabolomic changes from before to after treatment included increases (P < 0.001) in acylcarnitines, plasmalogens, and other phospholipids, whereas proline and other intermediaries of one-carbon metabolism-that is, methionine and cysteine-were reduced (P < 0.001). Direct significant correlations (P < 0.05 after the false discovery rate procedure) were identified between acylcarnitines, plasmalogens, phospholipids, lyso-phospholipids, and sphingomyelins compared with vitamin B-12 status and nerve function. Multiple connections were identified with primary metabolites (e.g., an inverse relation between vitamin B-12 markers and tryptophan, tyrosine, and pyruvic, succinic, and citric acids, and a direct correlation between the nerve score and arginine). CONCLUSIONS: The human serum metabolome in vitamin B-12 deficiency and the changes that occur after supplementation are characterized. Metabolomics revealed connections between vitamin B-12 status and serum metabolic markers of mitochondrial function, myelin integrity, oxidative stress, and peripheral nerve function, including some previously implicated in Alzheimer and Parkinson diseases. This trial was registered at www.controlled-trials.com as ISRCTN02694183.


Asunto(s)
Metaboloma , Nervios Periféricos/fisiopatología , Deficiencia de Vitamina B 12/metabolismo , Anciano , Femenino , Humanos , Masculino , Mitocondrias/fisiología , Vitamina B 12/administración & dosificación , Vitamina B 12/sangre , Deficiencia de Vitamina B 12/sangre
18.
FASEB J ; 31(4): 1434-1448, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28007783

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/complicaciones , Cofactor PQQ/uso terapéutico , Efectos Tardíos de la Exposición Prenatal/prevención & control , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Ceramidas/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Femenino , Interleucina-6/genética , Interleucina-6/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Estrés Oxidativo , PPAR gamma/metabolismo , Cofactor PQQ/administración & dosificación , Cofactor PQQ/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/etiología
19.
J Nutr ; 145(4): 691-700, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25833773

RESUMEN

BACKGROUND: It has been suggested that perturbations in branched-chain amino acid (BCAA) catabolism are associated with insulin resistance and contribute to elevated systemic BCAAs. Evidence in rodents suggests dietary protein rich in BCAAs can increase BCAA catabolism, but there is limited evidence in humans. OBJECTIVE: We hypothesize that a diet rich in BCAAs will increase BCAA catabolism, which will manifest in a reduction of fasting plasma BCAA concentrations. METHODS: The metabolome of 27 obese women with metabolic syndrome before and after weight loss was investigated to identify changes in BCAA metabolism using GC-time-of-flight mass spectrometry. Subjects were enrolled in an 8-wk weight-loss study including either a 20-g/d whey (whey group, n = 16) or gelatin (gelatin group, n = 11) protein supplement. When matched for total protein by weight, whey protein has 3 times the amount of BCAAs compared with gelatin protein. RESULTS: Postintervention plasma abundances of Ile (gelatin group: 637 ± 18, quantifier ion peak height ÷ 100; whey group: 744 ± 65), Leu (gelatin group: 1210 ± 33; whey group: 1380 ± 79), and Val (gelatin group: 2080 ± 59; whey group: 2510 ± 230) did not differ between treatment groups. BCAAs were significantly correlated with homeostasis model assessment of insulin resistance at baseline (r = 0.52, 0.43, and 0.49 for Leu, Ile, and Val, respectively; all, P < 0.05), but correlations were no longer significant at postintervention. Pro- and Cys-related pathways were found discriminant of whey protein vs. gelatin protein supplementation in multivariate statistical analyses. CONCLUSIONS: These findings suggest that BCAA metabolism is, at best, only modestly affected at a whey protein supplementation dose of 20 g/d. Furthermore, the loss of an association between postintervention BCAA and homeostasis model assessment suggests that factors associated with calorie restriction or protein intake affect how plasma BCAAs relate to insulin sensitivity. This trial was registered at clinicaltrials.gov as NCT00739479.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Suplementos Dietéticos , Metaboloma , Proteínas de la Leche/administración & dosificación , Obesidad/dietoterapia , Pérdida de Peso , Adulto , Aminoácidos de Cadena Ramificada/administración & dosificación , Glucemia , Índice de Masa Corporal , Restricción Calórica , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Gelatina/administración & dosificación , Homeostasis , Humanos , Insulina/sangre , Persona de Mediana Edad , Análisis Multivariante , Obesidad/sangre , Circunferencia de la Cintura , Proteína de Suero de Leche
20.
Circ Cardiovasc Genet ; 7(6): 955-964, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25516625

RESUMEN

Statins are the frontline in cholesterol reduction therapies; however, their use in combination with agents that possess complimentary mechanisms of action may achieve further reductions in low-density lipoprotein cholesterol. Thirty-nine patients were treated with either 80 mg simvastatin (n=20) or 10 mg simvastatin plus 10 mg ezetimibe (n=19) for 6 weeks. Dosing was designed to produce comparable low-density lipoprotein cholesterol reductions, while enabling assessment of potential simvastatin-associated pleiotropic effects. Baseline and post-treatment plasma were analyzed for lipid mediators (eg, eicosanoids and endocannabinoids) and structural lipids by liquid chromatography tandem mass spectrometry. After statistical analysis and orthogonal projections to latent structures multivariate modeling, no changes were observed in lipid mediator levels, whereas global structural lipids were reduced in response to both monotherapy (R(2)Y=0.74; Q(2)=0.66; cross-validated ANOVA P=7.0×10(-8)) and combination therapy (R(2)Y=0.67; Q(2)=0.54; cross-validated ANOVA P=2.6×10(-5)). Orthogonal projections to latent structures modeling identified a subset of 12 lipids that classified the 2 treatment groups after 6 weeks (R(2)Y=0.65; Q(2)=0.61; cross-validated ANOVA P=5.4×10(-8)). Decreases in the lipid species phosphatidylcholine (15:0/18:2) and hexosyl-ceramide (d18:1/24:0) were the strongest discriminators of low-density lipoprotein cholesterol reductions for both treatment groups (q<0.00005), whereas phosphatidylethanolamine (36:3e) contributed most to distinguishing treatment groups (q=0.017). Shifts in lipid composition were similar for high-dose simvastatin and simvastatin/ezetimibe combination therapy, but the magnitude of the reduction was linked to simvastatin dosage. Simvastatin therapy did not affect circulating levels of lipid mediators, suggesting that pleiotropic effects are not associated with eicosanoid production. Only high-dose simvastatin reduced the relative proportion of sphingomyelin and ceramide to phosphatidylcholine (q=0.008), suggesting a pleiotropic effect previously associated with a reduced risk of cardiovascular disease.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Azetidinas/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Simvastatina/uso terapéutico , Anciano , Análisis de Varianza , Ceramidas/análisis , Colesterol/sangre , LDL-Colesterol/sangre , Análisis Discriminante , Método Doble Ciego , Esquema de Medicación , Combinación de Medicamentos , Combinación Ezetimiba y Simvastatina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/análisis , Esfingomielinas/análisis , Resultado del Tratamiento , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA