Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Pharmacol ; 198: 114973, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189109

RESUMEN

Arsenite, a well-established human carcinogen and toxic compound, promotes the formation of mitochondrial superoxide (mitoO2-) via a Ca2+-dependent mechanism, in which an initial stimulation of the inositol 1, 4, 5-trisphosphate receptor (IP3R) is followed by the activation of the ryanodine receptor (RyR), critical for providing Ca2+ to the mitochondria. We now report that, under the same conditions, arsenite triggers endoplasmic reticulum (ER) stress and a threefold increase in ER oxidoreductin 1α (ERO1 α) levels in proliferating U937 cells. EN460, an inhibitor of ERO1 α, recapitulated all the effects associated with RyR inhibition or downregulation, including prevention of RyR-induced Ca2+ accumulation in mitochondria and the resulting O2-. formation. Quantitatively similar results were obtained in inhibitor studies performed in terminally differentiated wild type C2C12 cells. Moreover, ERO1 α knockout C2C12 myotubes responded to arsenite as their wild type counterpart supplemented with EN460. As a final note, arsenite enhanced the expression of ERO1 α via a mechanism mediated by Ca2+ release from both the IP3R and RyR. We therefore conclude that arsenite activates a positive feedback amplification cycle between Ca2+ levels and ERO1 α in the ER, by which IP3R-dependent Ca2+ induces ERO1 α and ERO1 α promotes Ca2+ release via RyR, thereby amplifying the initial Ca2+ load and causing the mitochondrial accumulation of the cation, critical for mitoO2- formation.


Asunto(s)
Señalización del Calcio , Glicoproteínas de Membrana , Oxidorreductasas , Canal Liberador de Calcio Receptor de Rianodina , Arsenitos/efectos adversos , Calcio/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células U937
2.
J Pharmacol Exp Ther ; 373(1): 62-71, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31941719

RESUMEN

The present study used human myeloid leukemia U937 cells, a versatile promonocytic cellular system that, based on its endoplasmic reticulum (ER)/mitochondria functional relationships, responds to low micromolar concentrations of arsenite with a single, defined mechanism of superoxide (O2 -.) formation. Under these conditions, we observe an initial Ca2+ mobilization from the ER associated with the mitochondrial accumulation of the cation, which is followed by Ca2+-dependent mitochondrial O2 -. (mitoO2 -.) formation. These events, which were barely detectable after 3 hours, were better appreciated at 6 hours. We found that markedly shorter exposure to arsenite and lower concentrations of arsenite are required to induce extensive O2 - formation in cells supplemented with inositol-1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR) agonists. Indeed, nanomolar arsenite induced maximal O2 -. formation after only 10 minutes of exposure, and this response was uniquely dependent on the enforced mitochondrial Ca2+ accumulation. The dramatic anticipation of and sensitization to the effects of arsenite caused by the IP3R or RyR agonists were accompanied by a parallel significant genotoxic response in the absence of detectable mitochondrial dysfunction and cytotoxicity. We conclude that the prolonged, low-micromolar arsenite exposure paradigm resulting in mitoO2 -. formation is necessary to affect Ca2+ homeostasis and accumulate the cation in mitochondria. The arsenite requirements to promote mitoO2 -. formation in the presence of sufficient mitochondrial Ca2+ were instead remarkably lower in terms of both concentration and time of exposure. These conditions were associated with the induction of extensive DNA strand scission in the absence of detectable signs of toxicity. SIGNIFICANCE STATEMENT: In respiration-proficient cells, arsenite causes mitochondrial Ca2+ accumulation and Ca2+-dependent mitochondrial superoxide formation. We now report that the second event requires remarkably lower concentrations of and time of exposure to the metalloid than the former. Indeed, a brief exposure to nanomolar levels of arsenite produced maximal effects under conditions in which the mitochondrial Ca2+ concentration ([Ca2+]m) was increased by inositol-1,4,5-trisphosphate receptor or ryanodine receptor agonists. Hence, specific substances or conditions enhancing the [Ca2+]m may potentiate the deleterious effects of arsenite by selectively increasing mitochondrial superoxide formation.


Asunto(s)
Arsenitos/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Metaloides/toxicidad , Mitocondrias/efectos de los fármacos , Superóxidos , Teratógenos/toxicidad , Relación Dosis-Respuesta a Droga , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Factores de Tiempo , Células U937
3.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767071

RESUMEN

Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite.


Asunto(s)
Ácido Ascórbico/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Monocitos/metabolismo , Ácido Peroxinitroso/farmacología , Superóxidos/metabolismo , Calcio/metabolismo , Humanos , Células U937
4.
Antioxid Redox Signal ; 13(6): 745-56, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20136509

RESUMEN

High concentrations of peroxynitrite elicit delayed formation of DNA-damaging species through a mechanism dependent on mitochondrial Ca(2+) accumulation and inhibition of complex III. A second mechanism, requiring remarkably lower peroxynitrite concentrations, is observed in the presence of bona fide complex III inhibitors and is Ca(2+) independent. We now report evidence for a third mechanism, also operative with low peroxynitrite concentrations, independent of electron transport, and entirely based on mitochondrial Ca(2+) accumulation. This concept was established by using permeabilized respiration-proficient and -deficient U937 cells supplemented with Ca(2+), inhibitors of mitochondrial Ca(2+) accumulation, and specific respiratory-chain inhibitors. The results obtained were validated by experiments performed with intact cells, by using caffeine (Cf ) to promote mitochondrial Ca(2+) accumulation. Under these conditions, low concentrations of peroxynitrite, otherwise unable to generate detectable DNA cleavage, caused maximal DNA strand scission through a mechanism insensitive to respiratory-chain inhibitors or to the respiration-deficient phenotype. The effects of Cf were mimicked by other ryanodine receptor agonists, were suppressed by ryanodine, and were not observed in cells failing to express the ryanodine receptor, as differentiated U937 cells or human monocytes. This study provides evidence for a novel mechanism whereby peroxynitrite may indirectly mediate DNA strand scission under inflammatory conditions.


Asunto(s)
Calcio/metabolismo , ADN/metabolismo , Genoma , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo , Línea Celular Tumoral , Humanos
5.
Mol Pharmacol ; 67(5): 1399-405, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15689569

RESUMEN

Exposure of U937 cells to an otherwise nontoxic concentration of peroxynitrite promotes a rapid necrotic response in the presence of pharmacological inhibitors of phospholipase A2. A 12-fold higher concentration of the oxidant, in the absence of additional treatments, caused remarkably greater DNA single-strand breakage, delayed formation of H2O2, and depletion of reduced glutathione but an identical level of toxicity. Cell death was prevented in both circumstances by nanomolar levels of arachidonic acid or by cyclosporin A via mechanisms unrelated to elimination of the above effects and was causally linked to prevention of mitochondrial permeability transition. Treatment with a high dose of peroxynitrite for 30 min caused an approximately 40% decline in ATP, both in the absence and presence of arachidonate, whereas only a small, arachidonic acid-sensitive reduction of the ATP pool was detected in cells treated with the low dose of peroxynitrite and the phospholipase A2 inhibitor. ATP-predepleted cells, however, were hypersensitive to peroxynitrite, and under these conditions, toxicity was not prevented by arachidonate. The above findings were reproduced in another promonocytic cell line, THP-1 cells. We concluded that the rapid necrotic response triggered by peroxynitrite in monocytes is mediated by a regulated process, not by ATP depletion, associated with reduced arachidonate availability. Supplementation of exogenous arachidonic acid always rescued cells via an ATP-dependent survival pathway.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ácido Araquidónico/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Ácido Peroxinitroso/toxicidad , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Necrosis/metabolismo , Necrosis/prevención & control , Células U937
6.
Biochem J ; 378(Pt 3): 959-66, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-14627438

RESUMEN

A short-term pre-exposure to dehydroascorbic acid (DHA) promotes U937 cell death upon exposure to otherwise non-toxic levels of peroxynitrite (ONOO-). Toxicity is mediated by a saturable mechanism and cell death takes place as a consequence of mitochondrial permeability transition. The following lines of evidence are consistent with the notion that the enhancing effects of DHA were related to mitochondrial events resulting in inhibition of complex III upon exposure to otherwise inactive concentrations of ONOO-. First, DHA, as well as bona fide complex III inhibitors, similarly enhanced toxicity and subsequent formation of H2O2 induced by ONOO- via a rotenone- or catalase-sensitive mechanism. Secondly, bona fide complex III inhibitors were ineffective in DHA-pre-loaded cells. In addition, respiration-deficient cells were resistant to toxicity elicited by ONOO- and their supplementation with increasing concentrations of DHA, although resulting in the accumulation of vitamin C levels identical with those observed in respiration-proficient cells, failed to affect ONOO- toxicity. Finally, oxygen-consumption experiments demonstrated that pre-exposure to DHA promotes the ONOO--dependent inhibition of complex III. In conclusion, the above results collectively demonstrate that increasing the intracellular accumulation of vitamin C promotes mitochondrial events leading to ONOO--dependent formation of H2O2 and resulting in a rapid necrotic response.


Asunto(s)
Ácido Deshidroascórbico/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Peróxido de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Peroxinitroso/toxicidad , Ácido Ascórbico/metabolismo , Muerte Celular , Sinergismo Farmacológico , Humanos , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Consumo de Oxígeno , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA