Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
ALTEX ; 39(2): 297­314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35064273

RESUMEN

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Asunto(s)
Alternativas a las Pruebas en Animales , Dispositivos Laboratorio en un Chip , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Preparaciones Farmacéuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
2.
Clin Transl Sci ; 14(5): 1659-1680, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33982436

RESUMEN

Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.


Asunto(s)
Alternativas al Uso de Animales/métodos , Técnicas de Cultivo Tridimensional de Células , Evaluación Preclínica de Medicamentos/métodos , Alternativas al Uso de Animales/normas , Células Cultivadas , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/normas , Humanos , Intestinos/citología , Riñón/citología , Hígado/citología , Neuronas , Esferoides Celulares , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Estados Unidos , United States Food and Drug Administration/normas
3.
ALTEX ; 37(3): 365-394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32113184

RESUMEN

The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.


Asunto(s)
Alternativas a las Pruebas en Animales , Bienestar del Animal , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Dispositivos Laboratorio en un Chip , Animales , Industria Farmacéutica , Humanos , Modelos Biológicos
4.
Toxicol Lett ; 314: 10-17, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31082523

RESUMEN

Botanical safety science continues to evolve as new tools for risk assessment become available alongside continual desire by consumers for "natural" botanical ingredients in consumer products. Focusing on botanical food/dietary supplements a recent international roundtable meeting brought together scientists to discuss the needs, available tools, and ongoing data gaps in the botanical safety risk assessment process. Participants discussed the key elements of botanical safety evaluations. They provided perspective on the use of a decision tree methodology to conduct a robust risk assessment and concluded with alignment on a series of consensus statements. This discussion highlighted the strengths and vulnerabilities in common assumptions, and the participants shared additional perspective to ensure that this end-to-end safety approach is sufficient, actionable and timely. Critical areas and data gaps were identified as opportunities for future focus. These include, better context on history of use, systematic assessment of weight of evidence, use of in silico approaches, inclusion of threshold of toxicological concern considerations, individual substances/matrix interactions of plant constituents, assessing botanical-drug interactions and adaptations needed to apply to in vitro and in vivo pharmacokinetic modelling of botanical constituents.


Asunto(s)
Árboles de Decisión , Suplementos Dietéticos/efectos adversos , Preparaciones de Plantas/efectos adversos , Toxicología/métodos , Animales , Consenso , Seguridad de Productos para el Consumidor , Relación Dosis-Respuesta a Droga , Humanos , Modelos Biológicos , Seguridad del Paciente , Preparaciones de Plantas/farmacocinética , Medición de Riesgo , Factores de Riesgo , Toxicocinética , Toxicología/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA