RESUMEN
BACKGROUND: The numbers needed to image to identify pelvic lymph node and/or distant metastases in newly diagnosed prostate cancer (PCa) patients according to risk level are unknown. METHODS: Relying on Surveillance, Epidemiology, and End Results (2010-2016), we tabulated rates and proportions of patients with (a) lymph node or (b) distant metastases according to National Comprehensive Cancer Network (NCCN) risk level and calculated the number needed to image (NNI) for both endpoints. Multivariable logistic regression analyses were performed. RESULTS: Of 145,939 newly diagnosed PCa patients assessable for analyses of pelvic lymph node metastases (cN1), 4559 (3.1%) harbored cN1 stage: 13 (0.02%), 18 (0.08%), 63 (0.3%), 512 (2.8%), and 3954 (14.9%) in low, intermediate favorable, intermediate unfavorable, high, and very high-risk levels. These resulted in NNI of 4619, 1182, 319, 35, and 7, respectively. Of 181,109 newly diagnosed PCa patients assessable for analyses of distant metastases (M1a-c ), 8920 (4.9%) harbored M1a-c stage: 50 (0.07%), 45 (0.1%), 161 (0.5%), 1290 (5.1%), and 7374 (22.0%) in low, intermediate favorable, intermediate unfavorable, high, and very high-risk. These resulted in NNI of 1347, 602, 174, 20, and 5, respectively. CONCLUSIONS: Our observations perfectly validated the NCCN recommendations for imaging in newly diagnosed high and very high-risk PCa patients. However, in unfavorable intermediate-risk PCa patients, in whom bone and soft tissue imaging is recommended, the NNI might be somewhat elevated to support routine imaging in clinical practice.
Asunto(s)
Neoplasias de la Próstata , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Masculino , Pelvis/patología , Neoplasias de la Próstata/patologíaRESUMEN
BACKGROUND: To test for differences in cancer-specific mortality (CSM) rates between radical prostatectomy (RP) vs external beam radiotherapy (EBRT) in National Comprehensive Cancer Network (NCCN) high-risk African American patients, as well as Johns Hopkins University (JHU) high-risk and very high-risk patients. MATERIALS AND METHODS: Within the Surveillance, Epidemiology, and End Results database (2010-2016), we identified 4165 NCCN high-risk patients, of whom 1944 (46.7%) and 2221 (53.3%) patients qualified for JHU high-risk or very high-risk definitions. Of all 4165 patients, 1390 (33.5%) were treated with RP versus 2775 (66.6%) with EBRT. Cumulative incidence plots and competing risks regression models addressed CSM before and after 1:1 propensity score matching between RP and EBRT NCCN high-risk patients. Subsequently, analyses were repeated separately in JHU high-risk and very high-risk subgroups. Finally, all analyses were repeated after landmark analyses were applied. RESULTS: In the NCCN high-risk cohort, 5-year CSM rates for RP versus EBRT were 2.4 versus 5.2%, yielding a multivariable hazard ratio of 0.50 (95% confidence interval [CI] 0.30-0.84, p = 0.009) favoring RP. In JHU very high-risk patients 5-year CSM rates for RP versus EBRT were 3.7 versus 8.4%, respectively, yielding a multivariable hazard ratio of 0.51 (95% CI: 0.28-0.95, p = 0.03) favoring RP. Conversely, in JHU high-risk patients, no significant CSM difference was recorded between RP vs EBRT (5-year CSM rates: 1.3 vs 1.3%; multivariable hazard ratio: 0.55, 95% CI: 0.16-1.90, p = 0.3). Observations were confirmed in propensity score-matched and landmark analyses adjusted cohorts. CONCLUSIONS: In JHU very high-risk African American patients, RP may hold a CSM advantage over EBRT, but not in JHU high-risk African American patients.