Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 330: 127227, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32521402

RESUMEN

A hydroxycinnamate-like component was identified in highbush blueberry (Vaccinium corymbosum) fruit, which had identical UV and mass spectrometric properties to an S-linked glutathionyl conjugate of chlorogenic acid synthesized using a peroxidase-catalyzed reaction. The conjugate was present in fruits from all highbush blueberry genotypes grown in one season, reaching 7-20% of the relative abundance of 5-caffeoylquininc acid. It was enriched, along with anthocyanins, by fractionation on solid phase cation-exchange units. Mining of pre-existing LC-MS data confirmed that this conjugate was ubiquitous in highbush blueberries, but also present in other Vaccinium species. Similar data mining identified this conjugate in potato tubers with enrichment in peel tissues. In addition, the conjugate was also present in commercial apple juice and was stable to pasteurization and storage. Although glutathionyl conjugates of hydroxycinnamic acids have been noted previously, this is the first report of glutathionyl conjugates of chlorogenic acids in commonly-eaten fruits and vegetables.


Asunto(s)
Arándanos Azules (Planta)/química , Ácido Clorogénico/análisis , Jugos de Frutas y Vegetales/análisis , Malus/química , Solanum tuberosum/química , Antocianinas/análisis , Frutas/química , Tubérculos de la Planta/química
2.
Metab Eng ; 54: 160-169, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30978503

RESUMEN

Plant material rich in anthocyanins has been historically used in traditional medicines, but only recently have the specific pharmacological properties of these compounds been the target of extensive studies. In addition to their potential to modulate the development of various diseases, coloured anthocyanins are valuable natural alternatives commonly used to replace synthetic colourants in food industry. Exploitation of microbial hosts as cell factories is an attractive alternative to extraction of anthocyanins and other flavonoids from plant sources or chemical synthesis. In this study, we present the lactic acid bacterium Lactococcus lactis as an ideal host for the production of high-value plant-derived bioactive anthocyanins using green tea as substrate. Besides the anticipated red-purple compounds cyanidin and delphinidin, orange and yellow pyranoanthocyanidins with unexpected methylation patterns were produced from green tea by engineered L. lactis strains. The pyranoanthocyanins are currently attracting significant interest as one of the most important classes of anthocyanin derivatives and are mainly formed during the aging of wine, contributing to both colour and sensory experience.


Asunto(s)
Antocianinas , Lactococcus lactis , Ingeniería Metabólica , Té/química , Antocianinas/biosíntesis , Antocianinas/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
3.
Plant Physiol ; 179(3): 969-985, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30397021

RESUMEN

Edible berries are considered to be among nature's treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts. Here, raspberry (Rubus idaeus, var Prestige) extracts were systematically analyzed to identify bioactive compounds against pathological processes of neurodegenerative diseases. Berry extracts were tested on different Saccharomyces cerevisiae strains expressing disease proteins associated with Alzheimer's, Parkinson's, or Huntington's disease, or amyotrophic lateral sclerosis. After identifying bioactivity against Huntington's disease, the extract was fractionated and the obtained fractions were tested in the yeast model, which revealed that salidroside, a glycosylated phenol, displayed significant bioactivity. Subsequently, a metabolic route to salidroside was reconstructed in S cerevisiae and Corynebacterium glutamicum The best-performing S cerevisiae strain was capable of producing 2.1 mm (640 mg L-1) salidroside from Glc in shake flasks, whereas an engineered C glutamicum strain could efficiently convert the precursor tyrosol to salidroside, accumulating up to 32 mm (9,700 mg L-1) salidroside in bioreactor cultivations (yield: 0.81 mol mol-1). Targeted yeast assays verified that salidroside produced by both organisms has the same positive effects as salidroside of natural origin.


Asunto(s)
Glucósidos/biosíntesis , Proteína Huntingtina/química , Enfermedad de Huntington/metabolismo , Extractos Vegetales/química , Rubus/química , Vías Biosintéticas , Fraccionamiento Químico , Glucósidos/química , Glucósidos/metabolismo , Modelos Biológicos , Fenoles/química , Fenoles/metabolismo , Extractos Vegetales/aislamiento & purificación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
J Agric Food Chem ; 66(4): 831-841, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29257861

RESUMEN

The reduction of the environmental footprint of crop production without compromising crop yield and their nutritional value is a key goal for improving the sustainability of agriculture. In 2009, the Balruddery Farm Platform was established at The James Hutton Institute as a long-term experimental platform for cross-disciplinary research of crops using two agricultural ecosystems. Crops representative of UK agriculture were grown under conventional and integrated management systems and analyzed for their water-soluble vitamin content. Integrated management, when compared with the conventional system, had only minor effects on water-soluble vitamin content, where significantly higher differences were seen for the conventional management practice on the levels of thiamine in field beans (p < 0.01), Spring barley (p < 0.05), and Winter wheat (p < 0.05), and for nicotinic acid in Spring barley (p < 0.05). However, for all crops, variety and year differences were of greater importance. These results indicate that the integrated management system described in this study does not significantly affect the water-soluble vitamin content of the crops analyzed here.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/química , Grano Comestible/química , Solanum tuberosum/química , Vicia faba/química , Vitaminas/análisis , Ácido Ascórbico/análisis , Hordeum/química , Niacina/análisis , Valor Nutritivo , Estaciones del Año , Tiamina/análisis , Triticum/química , Reino Unido , Complejo Vitamínico B/análisis
5.
Ann Bot ; 107(2): 243-54, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21148585

RESUMEN

BACKGROUND AND AIMS: Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is likely to result in considerable economic and ecological benefits. To date, research into the molecular and biochemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial stages of P deficiency. METHODS: A barley microarray was successfully used to study gene expression in perennial ryegrass and this was complemented with gas chromatography-mass spectrometry metabolic profiling to obtain an overview of the plant response to early stages of P deficiency. KEY RESULTS: After 24 h of P deficiency, internal phosphate concentrations were reduced and significant alterations were detected in the metabolome and transcriptome of two perennial ryegrass genotypes. Results indicated a replacement of phospholipids with sulfolipids and the utilization of glycolytic bypasses in response to P deficiency in perennial ryegrass. CONCLUSIONS: The transcriptome and metabolome of perennial ryegrass undergo changes in response to reductions in P supply after 24 h.


Asunto(s)
Lolium/genética , Lolium/metabolismo , Fósforo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Genoma de Planta , Genotipo , Metaboloma , Análisis de Secuencia por Matrices de Oligonucleótidos , Compuestos Organofosforados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA