Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 167: 115476, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713986

RESUMEN

The Amazonian species investigated in this research are commonly utilized for their anti-inflammatory properties and their potential against various diseases. However, there is a lack of scientifically supported information validating their biological activities. In this study, a total of seventeen ethanolic or aqueous extracts derived from eight Amazonian medicinal plants were evaluated for their activity against Herpes Simplex type 1 (HSV-1) and Chikungunya viruses (CHIKV). Cytotoxicity was assessed using the sulforhodamine B method, and the antiviral potential was determined through a plaque number reduction assay. Virucidal tests were conducted according to EN 14476 standards for the most potent extracts. Additionally, the chemical composition of the most active extracts was investigated. Notably, the LMLE10, LMBA11, MEBE13, and VABE17 extracts exhibited significant activity against CHIKV and the non-acyclovir-resistant strain of HSV-1 (KOS) (SI > 9). The MEBE13 extract demonstrated unique inhibition against the acyclovir-resistant strain of HSV-1 (29-R). Virucidal assays indicated a higher level of virucidal activity compared to their antiviral activity. Moreover, the virucidal capacity of the most active extracts was sustained when tested in the presence of protein solutions against HSV-1 (KOS). In the application of EN 14476 against HSV-1 (KOS), the LMBA11 extract achieved a 99.9% inhibition rate, while the VABE17 extract reached a 90% inhibition rate. This study contributes to the understanding of medicinal species native to the Brazilian Amazon, revealing their potential in combating viral infections that have plagued humanity for centuries (HSV-1) or currently lack specific therapeutic interventions (CHIKV).

2.
Bioprocess Biosyst Eng ; 46(5): 665-679, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36795191

RESUMEN

This study evaluated the bioherbicidal potential of wild fungi grown on microalgal biomass from the digestate treatment of biogas production. Four fungal isolates were used and the extracts were evaluated for the activity of different enzymes and characterized by gas chromatography coupled with mass spectrometry. The bioherbicidal activity was assessed by application on Cucumis sativus, and the leaf damage was visually estimated. The microorganisms showed potential as agents producing an enzyme pool. The obtained fungal extracts presented different organic compounds, most acids, and when applied to Cucumis sativus, showed high levels of leaf damage (80-100 ± 3.00%, deviation relative to the observed average damage). Therefore, the microbial strains are potential biological control agents of weeds, which, together with the microalgae biomass, offer the appropriate conditions to obtain an enzyme pool of biotechnological relevance and with favorable characteristics to be explored as bioherbicides, addressing aspects within the environmental sustainability.


Asunto(s)
Microalgas , Biomasa , Cromatografía de Gases y Espectrometría de Masas , Biocombustibles , Hongos , Extractos Vegetales
3.
Environ Sci Pollut Res Int ; 29(19): 28565-28571, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988790

RESUMEN

Phycoremediation of swine wastewater is a promising treatment since it efficiently removes nutrients and contaminants and, simultaneously, its biomass can be harvested and used to obtain a wide range of valuable compounds and metabolites. In this context, biomass microalgae were investigated for the phycoremediation of swine wastewater, and biomass extracts for its virucidal effect against enveloped and non-enveloped viruses. Microalgae were cultivated in a pilot scale bioreactor fed with swine wastewater as the growth substrate. Hexane, dichloromethane, and methanol were used to obtain the microalgae extracts. Extracts were tested for virucidal potential against HSV-1 and HAdV-5. Virucidal assays were conducted at temperatures that emulate environmental conditions (21 °C) and body temperature (37 °C). The maximum production of microalgae biomass reached a concentration of 318.5 ± 23.6 mgDW L-1. The results showed that phycoremediation removed 100% of ammonia-N and phosphate-P, with rates (k1) of 0.218 ± 0.013 and 0.501 ± 0.038 (day-1), respectively. All microalgae extract reduced 100% of the infectious capacity of HSV-1. The microalgae extracts with dichloromethane and methanol showed inhibition activities at the lowest concentration (3.125 µg mL-1). Virucidal assays against HAdV-5 using microalgae extract of hexane and methanol inhibited the infectious capacity of the virus by 70% at all concentrations tested at 37 °C. At a concentration of 12.5 µg mL-1, the dichloromethane microalgae extract reduced 50-80% of the infectious capacity of HAdV-5, also at 37 °C. Overall, the results suggest that the microalgae can be an attractive source of feedstock biomass for the exploration of alternative virucidal compounds.


Asunto(s)
Chlorella , Microalgas , Animales , Biomasa , Hexanos , Metanol/metabolismo , Cloruro de Metileno , Microalgas/metabolismo , Nitrógeno/análisis , Extractos Vegetales/metabolismo , Porcinos , Aguas Residuales
4.
J Mater Sci Mater Med ; 32(1): 1, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469820

RESUMEN

In in vitro culture systems, dexamethasone (DEX) has been applied with ascorbic acid (ASC) and ß-glycerophosphate (ßGLY) as culture media supplementation to induce osteogenic differentiation of mesenchymal stem cells. However, there are some inconsistencies regarding the role of DEX as osteogenic media supplementation. Therefore, this study verified the influence of DEX culture media supplementation on the osteogenic differentiation, especially the capacity to mineralize the extracellular matrix of stem cells from human exfoliated deciduous teeth (SHED). Five groups were established: G1-SHED + Dulbecco's Modified Eagles' Medium (DMEM) + fetal bovine serum (FBS); G2-SHED + DMEM + FBS + DEX; G3-SHED + DMEM + FBS + ASC + ßGLY; G4-SHED + DMEM + FBS + ASC + ßGLY + DEX; G5-MC3T3-E1 + α Minimal Essential Medium (MEM) + FBS + ASC + ßGLY. DNA content, alkaline phosphatase (ALP) activity, free calcium quantification in the extracellular medium, and extracellular matrix mineralization quantification through staining with von Kossa, alizarin red, and tetracycline were performed on days 7 and 21. Osteogenic media supplemented with ASC and ß-GLY demonstrated similar effects on SHED in the presence or absence of DEX for DNA content (day 21) and capacity to mineralize the extracellular matrix according to alizarin red and tetracycline quantifications (day 21). In addition, the presence of DEX in the osteogenic medium promoted less ALP activity (day 7) and extracellular matrix mineralization according to the von Kossa assay (day 21), and more free calcium quantification at extracellular medium (day 21). In summary, the presence of DEX in the osteogenic media supplementation did not interfere with SHED commitment into mineral matrix depositor cells. We suggest that DEX may be omitted from culture media supplementation for SHED osteogenic differentiation in vitro studies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Dexametasona/farmacología , Osteogénesis/efectos de los fármacos , Células Madre/citología , Diente Primario/metabolismo , Células 3T3 , Animales , Ácido Ascórbico/química , Calcio/metabolismo , Medios de Cultivo , ADN/metabolismo , Matriz Extracelular/metabolismo , Glicerofosfatos/química , Humanos , Técnicas In Vitro , Ratones
5.
Environ Sci Pollut Res Int ; 28(18): 23235-23242, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33442807

RESUMEN

The Brazilian Biodigester Septic Tank (BBST) is an on-site appropriate technology for blackwater treatment, which was developed to yield an effluent suitable for agricultural use. Although several studies have proven its efficacy for secondary blackwater treatment, there are few published studies about the microbiological quality of its effluent, and most of them focus on the quantification of total or thermotolerant coliforms. This study evaluates the performance of a BBST for the removal of human adenovirus (HAdV), Enterococcus spp., Salmonella sp., and Escherichia coli. The results further clarify the safety and risks associated with the reuse of the obtained effluent. The full-scale system consists of three 1.2 m3 interconnected reactors, with a blackwater input of 0.045 m3/day, and hydraulic retention time of 80 days. Six sample campaigns were performed at different stages of the monthly operating cycle. The system presented an average removal efficiency of 5.09 log10 for E. coli, 3.22 log10 for Enterococcus spp., 1.2 log10 for Salmonella sp., and 3.0 log10 for HAdV. According to the World Health Organization standards, the obtained effluent is suitable for subsurface irrigation, and for use in crops that develop distant from the soil or highly mechanized crop systems.


Asunto(s)
Escherichia coli , Aguas Residuales , Brasil , Humanos , Salmonella , Suelo , Eliminación de Residuos Líquidos , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA