Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 89: 153622, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34161895

RESUMEN

BACKGROUND: Type 2 Diabetes (T2D) is characterized by deregulation in carbohydrate and lipid metabolism, with a very high mortality rate. Glucose Transporter type 4 (GLUT4) plays a crucial role in T2D and represents a therapeutic target of interest. Tillandsia usneoides (T. usneoides) is a plant used as a remedy for diabetes. T. usneoides decreased blood glucose in different experimental models. However, the involvement of GLUT4 in this effect has not yet been explored. PURPOSE: This study aimed to investigate whether any component in T. usneoides might participate in the effect on blood glucose through a bioassay-guided fractionation, testing its potential antihyperglycemic effect in mice, as well as its influence on GLUT4 translocation in C2C12 myoblasts and primary hepatocytes. METHODS: The aqueous extract and the Ethyl Acetate fraction (TU-AcOEt) of T. usneoides were evaluated in a hypoglycemic activity bioassay and in the glucose tolerance test in CD-1 mice. TU-AcOEt was fractionated, obtaining five fractions that were studied in an additional glucose tolerance test. C1F3 was fractioned again, and its fractions (C2F9-12, C2F22-25, and C2F38-44) were examined by HPLC. The C2F38-44 fraction was analyzed by Mass Spectrometry (MS) and subjected to additional fractionation. The fraction C3F6-9 was explored by Nuclear Magnetic Resonance (NMR), resulting in 5,7,4´-trihydroxy-3,6,3´,5´-tetramethoxyflavone (Flav1). Subsequently, a viability test was performed to evaluate the cytotoxic effect of Flav1 and fractions C2F9-12, C2F22-25. C2F38-44, and C3F30-41 in C2C12 myoblasts and primary mouse hepatocytes. Confocal microscopy was also performed to assess the effect of Flav1 and fractions on GLUT4 translocation. RESULTS: The TU-AcOEt fraction exhibited a hypoglycemic and antihyperglycemic effect in mice, and its fractionation resulted in five fractions, among which fraction C1F3 decreased blood glucose. MS and NMR analysis revealed the presence of Flav1. Finally, Flav1 significantly promoted the translocation of GLUT4 in C2C12 myoblasts and primary hepatocytes. CONCLUSION: To date, Flav1 has not been reported to have activity in GLUT4; this study provides evidence that T. usneoides is a plant with the potential to develop novel therapeutic agents for the control of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Flavonas , Transportador de Glucosa de Tipo 4/metabolismo , Hepatocitos/efectos de los fármacos , Hipoglucemiantes , Mioblastos/efectos de los fármacos , Animales , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Flavonas/farmacología , Hipoglucemiantes/farmacología , Ratones , Fitoquímicos/farmacología , Tillandsia/química
2.
Eur J Pharmacol ; 883: 173252, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32534078

RESUMEN

Type 2 diabetes (T2D) is a metabolic disease characterized by defects in glycemia regulation. This disease is associated with alterations in insulin action and lipid metabolism, generating hyperglycemia and dyslipidemias. Currently, it is necessary to develop new or known drugs that promote the sensitization of insulin action. Thus, activation of peroxisome proliferator-activated receptors (PPARs) is probably the key to doing this. PPARs participate in maintaining an energetic balance between storage and the expenditure of energy. The activation of PPARγ produces the storage of energy, mainly as glycogen and fat. Meanwhile, PPARα activation promotes lipid degradation. Oleanolic acid (OA), a pentacyclic triterpenoid of numerous edible and medicinal plants, decreases hyperglycemia and lipid accumulation. However, the effects on PPARs and their regulated genes are unknown. Our aim was to determine the effects of OA on PPAR γ/α expression and their regulated genes (adiponectin, type 4 glucose transporter, fatty acid transport protein, and long-chain acyl-CoA synthetase) in C2C12 myoblasts by RT-PCR, Western blot, GLUT-4 translocation, and lipid storage in 3T3-L1 adipocytes. In C2C12 myoblasts, OA increased the expression of mRNA in both PPARγ/α and their regulated genes; also, PPARγ, GLUT-4, and FATP-1 protein expression increased, as well as GLUT-4 translocation. In 3T3-L1, OA increased the expression of mRNA in both PPARγ/α and maintained lipid storage unchanged. In conclusion, OA exhibited a dual action on PPARγ/α, which might explain in part its antihyperglycemic effect. This compound represents an alternative for designing novel therapeutic strategies in the control of T2D.


Asunto(s)
Adipocitos/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Ácido Oleanólico/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Mioblastos Esqueléticos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Transporte de Proteínas , Transducción de Señal
3.
J Pharm Pharmacol ; 65(10): 1563-76, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24028624

RESUMEN

OBJECTIVES: Cucurbita ficifolia (characterised by its D chiro inositol (DCI) content) and of synthetic DCI on the redox state, mRNA expression and secretions of proinflammatory cytokines. Additionally, we evaluated the insulin-mimetic action of both treatments by assessing protein kinase B (PKB) activation in 3T3-L1 adipocytes. METHODS: Adipocytes were treated with C. ficifolia and synthetic DCI. The redox state was determined by spectrophotometry as changes in the reduced glutathione/oxidised glutathione (GSH/GSSG) ratio, glutathione peroxidase and glutathione reductase activities; H2 O2 levels were measured by flow cytometry. The mRNA expression and the protein level of cytokines were determinate by real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The activation of PKB activation was detected by Western blot. KEY FINDINGS: C. ficifolia extract and synthetic DCI reduced oxidative stress by decreased H2 O2 levels, increased glutathione peroxidase activity and changes in the GSH/GSSG ratio. Furthermore, DCI decreased the mRNA expression and secretion of tumour necrosis factor-α, interleukin 6 (IL-6) and resistin, while C. ficifolia reduced protein levels of resistin and increased IL-6 levels. Only DCI demonstrated insulin-mimetic action. CONCLUSIONS: The antioxidant and anti-inflammatory effects of C. ficifolia extract can be explained in part by its DCI content, which modulates the GSH/GSSG ratio and contributes to a reduced proinflammatory state. C. ficifolia and DCI treatments may reduce the disturbances caused by oxidative stress. Additionally, DCI may improve insulin sensitivity through its insulin-mimetic effects.


Asunto(s)
Adipocitos/efectos de los fármacos , Antioxidantes/farmacología , Cucurbita/química , Citocinas/inmunología , Inositol/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/inmunología , Adipocitos/metabolismo , Adipoquinas/metabolismo , Animales , Antioxidantes/aislamiento & purificación , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Inositol/aislamiento & purificación , Ratones , Oxidación-Reducción , Extractos Vegetales/aislamiento & purificación , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA