Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Res Toxicol ; 33(4): 967-974, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32180400

RESUMEN

Arsenic is one of the inorganic pollutants typically found in natural waters, and its toxic effects on the human body are currently of great concern. For this reason, the search for detoxifying agents that can be used in a so-called "chelation therapy" is of primary importance. However, to the aim of finding the thermodynamic behavior of efficient chelating agents, extensive speciation studies, capable of reproducing physiological conditions in terms of pH, temperature, and ionic strength, are in order. Here, we report on the acid-base properties of meso-2,3-dimercaptosuccinic acid (DMSA) at different temperatures (i.e., T = 288.15, 298.15, 310.15, and 318.15 K). In particular, its capability to interact with As(III) has been investigated by experimentally evaluating some crucial thermodynamic parameters (ΔH and TΔS), stability constants, and its speciation model. Additionally, in order to gather information on the microscopic coordination modalities of As(III) with the functional groups of DMSA and, at the same time, to better interpret the experimental results, a series of state-of-the-art ab initio molecular dynamics simulations have been performed. For the sake of completeness, the sequestering capabilities of DMSA-a simple dithiol ligand-toward As(III) are directly compared with those recently emerged from similar analyses reported on monothiol ligands.


Asunto(s)
Arsénico/aislamiento & purificación , Líquidos Corporales/química , Quelantes/química , Succímero/química , Arsénico/química , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Simulación de Dinámica Molecular , Estructura Molecular , Termodinámica
2.
Curr Med Chem ; 21(33): 3819-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24934341

RESUMEN

Both mercury(II) and monomethyl mercury(II) poisonings are of great concern for several reasons. As it happens for other metals, chelation therapy is the most indicated treatment for poisoned patients. The efficacy of the therapy and the reduction of side-effects can be sensibly enhanced by an accurate knowledge of all the physiological mechanisms involved in metal uptake, transport within and between various tissues, and (possibly) clearance. All these aspects, however, are strictly dependent on the chemical speciation (i.e., the distribution of the chemical species of a component in a given system) of both the metal and the chelating agent in the systems where they are present. In this light, this review analyzes the state of the art of research performed in this field for mercury(II) and methylmercury(II). After a brief summary of their main sources, the physiological patterns for the treatment of mercury poisoning have also been considered. The binding ability of various chelating agents toward mercury has been then analyzed by modeling the behavior of the main classes of ligands present in biological fluids and/or frequently used in chelation therapy. Their sequestering ability has been successively evaluated by means of a semiempirical parameter already proposed for its objective quantification, and the main characteristics of an efficient chelating agent have been evaluated on this basis.


Asunto(s)
Quelantes/química , Mercurio/química , Compuestos de Metilmercurio/química
3.
Talanta ; 75(3): 775-85, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18585146

RESUMEN

In this paper we report a comparison on the sequestering ability of some polycarboxylic ligands towards dioxouranium(VI) (UO(2)(2+), uranyl). Ligands taken into account are mono- (acetate), di- (oxalate, malonate, succinate and azelate), tri- (1,2,3-propanetricarboxylate) and hexa-carboxylate (1,2,3,4,5,6-benzenehexacarboxylate). The sequestering ability of polycarboxylic ligands towards UO(2)(2+) was quantified by a new approach expressed by means of a sigmoid Boltzman type equation and of a empirical parameters (pL(50)) which defines the amount of ligand necessary to sequester 50% of the total UO(2)(2+) concentration. A fairly linear correlation was obtained between pL(50) or log K(110) (log K(110) refers to the equilibrium: UO(2)(2+)+L(z-)=UO(2)L((2-z)); L=generic ligand) and the polyanion charges. In order to complete the picture, a tetra-carboxylate ligand (1,2,3,4-butanetetracarboxylate) was studied in NaCl aqueous solutions at 0

Asunto(s)
Ácidos Dicarboxílicos/química , Modelos Químicos , Óxidos/química , Uranio/química , Butanos/química , Ácidos Carboxílicos/química , Ligandos , Sustancias Macromoleculares/química , Estructura Molecular , Óxidos/análisis , Reproducibilidad de los Resultados , Uranio/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA