Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9054, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270596

RESUMEN

Herein, four endophytic fungal strains living in healthy roots of garlic were used to produce selenium nanoparticles (Se-NPs) via green synthesis. Penicillium verhagenii was found to be the most efficient Se-NPs producer with a ruby red color that showed maximum surface plasmon resonance at 270 nm. The as-formed Se-NPs were crystalline, spherical, and well-arranged without aggregation, and ranged from 25 to 75 nm in size with a zeta potential value of -32 mV, indicating high stability. Concentration-dependent biomedical activities of the P. verhagenii-based Se-NPs were observed, including promising antimicrobial activity against different pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis) with minimum inhibitory concentration (MIC) of 12.5-100 µg mL-1. The biosynthesized Se-NPs showed high antioxidant activity with DPPH-scavenging percentages of 86.8 ± 0.6% at a concentration of 1000 µg mL-1 and decreased to 19.3 ± 4.5% at 1.95 µg mL-1. Interestingly, the Se-NPs also showed anticancer activity against PC3 and MCF7 cell lines with IC50 of 225.7 ± 3.6 and 283.8 ± 7.5 µg mL-1, respectively while it is remaining biocompatible with normal WI38 and Vero cell lines. Additionally, the green synthesized Se-NPs were effective against instar larvae of a medical insect, Aedes albopictus with maximum mortality of 85.1 ± 3.1, 67.2 ± 1.2, 62.10 ± 1.4, and 51.0 ± 1.0% at a concentration of 50 µg mL-1 for I, II, III, and IV-instar larva, respectively. These data highlight the efficacy of endophytic fungal strains for cost-effective and eco-friendly Se-NPs synthesis with different applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Selenio , Humanos , Antioxidantes/metabolismo , Selenio/farmacología , Selenio/química , Nanopartículas del Metal/química , Antiinfecciosos/química , Células MCF-7 , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
Sci Rep ; 12(1): 11834, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821239

RESUMEN

Selenium nanoparticles (Se-NPs) has recently received great attention over owing to their superior optical properties and wide biological and biomedical applications. Herein, crystallographic and dispersed spherical Se-NPs were green synthesized using endophytic fungal strain, Penicillium crustosum EP-1. The antimicrobial, anticancer, and catalytic activities of biosynthesized Se-NPs were investigated under dark and light (using Halogen tungsten lamp, 100 Watt, λ > 420 nm, and light intensity of 2.87 W m-2) conditions. The effect of Se-NPs was dose dependent and higher activities against Gram-positive and Gram-negative bacteria as well different Candida spp. were attained in the presence of light than obtained under dark conditions. Moreover, the viabilities of two cancer cells (T47D and HepG2) were highly decreased from 95.8 ± 2.9% and 93.4 ± 3.2% in dark than those of 84.8 ± 2.9% and 46.4 ± 3.3% under light-irradiation conditions, respectively. Significant decreases in IC50 values of Se-NPs against T47D and HepG2 were obtained at 109.1 ± 3.8 and 70.4 ± 2.5 µg mL-1, respectively in dark conditions than 19.7 ± 7.2 and 4.8 ± 4.2 µg mL-1, respectively after exposure to light-irradiation. The photoluminescence activity of Se-NPs revealed methylene blue degradation efficiency of 89.1 ± 2.1% after 210 min under UV-irradiation compared to 59.7 ± 0.2% and 68.1 ± 1.03% in dark and light conditions, respectively. Moreover, superior stability and efficient MB degradation efficiency were successfully achieved for at least five cycles.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Selenio , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Ciclohexanos , Hongos , Bacterias Gramnegativas , Bacterias Grampositivas , Nanopartículas del Metal/química , Penicillium , Selenio/química , Selenio/farmacología
3.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805524

RESUMEN

The development of new materials is needed to address the environmental challenges of wastewater treatment. The phosphorylation of guar gum combined with its association to chitosan allows preparing an efficient sorbent for the removal of U(VI) from slightly acidic solutions. The incorporation of magnetite nanoparticles enhances solid/liquid. Functional groups are characterized by FTIR spectroscopy while textural properties are qualified by N2 adsorption. The optimum pH is close to 4 (deprotonation of amine and phosphonate groups). Uptake kinetics are fast (60 min of contact), fitted by a pseudo-first order rate equation. Maximum sorption capacities are close to 1.28 and 1.16 mmol U g-1 (non-magnetic and magnetic, respectively), while the sorption isotherms are fitted by Langmuir equation. Uranyl desorption (using 0.2 M HCl solutions) is achieved within 20-30 min; the sorbents can be recycled for at least five cycles (5-6% loss in sorption performance, complete desorption). In multi-component solutions, the sorbents show marked preference for U(VI) and Nd(III) over alkali-earth metals and Si(IV). The zone of exclusion method shows that magnetic sorbent has antibacterial effects against both Gram+ and Gram- bacteria, contrary to non-magnetic material (only Gram+ bacteria). The magnetic composite is highly promising as antimicrobial support and for recovery of valuable metals.


Asunto(s)
Quitosano/química , Galactanos/química , Nanopartículas de Magnetita/química , Mananos/química , Nanocompuestos/química , Gomas de Plantas/química , Uranio/química , Purificación del Agua/métodos , Adsorción , Antibacterianos/química , Antibacterianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Cinética , Fosforilación
4.
Biomolecules ; 11(3)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668378

RESUMEN

The in vitro callus induction of Solanum incanum L. was executed on MS medium supplemented with different concentrations of auxin and cytokinin utilizing petioles and explants of leaves. The highest significant fresh weights from petioles and leaf explants were 4.68 and 5.13 g/jar for the medium supplemented with1.0 mg L-1 BA and 1.0 mg L-1 2,4-D. The callus extract of the leaves was used for the green synthesis of silver nanoparticles (Ag-NPs). Analytical methods used for Ag-NPs characterization were UV-vis spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM). Spherical, crystallographic Ag-NPs with sizes ranging from 15 to 60nm were successfully formed. The FT-IR spectra exhibited the role of the metabolites involved in callus extract in reducing and capping Ag-NPs. The biological activities of Ag-NPs were dose-dependent. The MIC value for Staphylococcus aureus, Bacillus subtilis, and Escherichia coli was 12.5 µg mL-1, while it was 6.25 µg mL-1 for Klebsiella pneumoniae, Pseudomonas aeruginosa, and Candida albicans. The highest inhibition of phytopathogenic fungi Alternaria alternata, Fusarium oxysporum, Aspergillus niger, and Pythium ultimum was 76.3 ± 3.7, 88.9 ± 4.1, 67.8 ± 2.1, and 76.4 ± 1.0%, respectively at 200 µg mL-1. Moreover, green synthesized Ag-NPs showed cytotoxic efficacy against cancerous cell lines HepG2, MCF-7 and normal Vero cell line with IC50 values of 21.76 ± 0.56, 50.19 ± 1.71, and 129.9 ± 0.94 µg mL-1, respectively.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Plata/química , Solanum/química , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
5.
Plants (Basel) ; 10(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401438

RESUMEN

In this study, 15 bacterial endophytes linked with the leaves of the native medicinal plant Pulicaria incisa were isolated and identified as Agrobacterium fabrum, Acinetobacter radioresistant, Brevibacillus brevis, Bacillus cereus, Bacillus subtilis, Paenibacillus barengoltzii, and Burkholderia cepacia. These isolates exhibited variant tolerances to salt stress and showed high efficacy in indole-3-acetic acid (IAA) production in the absence/presence of tryptophan. The maximum productivity of IAA was recorded for B. cereus BI-8 and B. subtilis BI-10 with values of 117 ± 6 and 108 ± 4.6 µg mL-1, respectively, in the presence of 5 mg mL-1 tryptophan after 10 days. These two isolates had a high potential in phosphate solubilization and ammonia production, and they showed enzymatic activities for amylase, protease, xylanase, cellulase, chitinase, and catalase. In vitro antagonistic investigation showed their high efficacy against the three phytopathogens Fusarium oxysporum, Alternaria alternata, and Pythium ultimum, with inhibition percentages ranging from 20% ± 0.2% to 52.6% ± 0.2% (p ≤ 0.05). Therefore, these two endophytic bacteria were used as bio-inoculants for maize seeds, and the results showed that bacterial inoculations significantly increased the root length as well as the fresh and dry weights of the roots compared to the control plants. The Zea mays plant inoculated with the two endophytic strains BI-8 and BI-10 significantly improved (p ≤ 0.05) the growth performance as well as the nutrient uptake compared with an un-inoculated plant.

6.
Biomolecules ; 11(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499067

RESUMEN

Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL-1 in the presence of 5 µg mL-1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.


Asunto(s)
Endófitos/metabolismo , Hongos/metabolismo , Plantas Medicinales/metabolismo , Alternaria , Amoníaco/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Ascomicetos/metabolismo , Aspergillus , Ephedra , Fermentación , Ácidos Indolacéticos/química , Penicillium , Fosfatos/química , Filogenia , Suelo
7.
Biomol Concepts ; 12(1): 175-196, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35041305

RESUMEN

The main objective of the current study was to improve the essential oil contents of Thymus vulgaris L. using bio-inoculation with bacterial endophytes. Therefore, out of fourteen endophytic bacterial isolates obtained from roots of T. vulgaris, five isolates were selected based on the highest nitrogen-fixation and phosphate solubilization activity and identified as: Bacillus haynesii T9r, Citrobacter farmeri T10r, Bacillus licheniformis T11r, Bacillus velezensis T12r, and Bacillus velezensis T13r. These five strains have been recorded as ammonia, hydrogen cyanide (HCN), siderophores, and indole-3-acetic acid (IAA) producers. These strains have the efficacy to fix-nitrogen by reduction of acetylene with values of 82.133±1.4-346.6±1.4 n-mole-C2H4/ml/24 h. The IAA, gibberellic acid, abscisic acid, benzyl, kinten, and ziaten production were confirmed using HPLC. Two strains of T11r and T13r showed the highest plant growth-promoting properties and were selected for bio-inoculation of T. vulgaris individually or in a consortium with different mineral fertilization doses (0, 50, 75, and 100%) under field conditions. The highest growth performance was attained with the endophytic consortium (T11r+T13r) in the presence of 100% mineral fertilization. The GC-MS analysis of thyme oil contents showed the presence of 23 various compounds with varying percentages and the thymol fraction represented the highest percentages (39.1%) in the presence of the bacterial consortium.


Asunto(s)
Aceites Volátiles , Thymus (Planta) , Endófitos , Desarrollo de la Planta , Aceites de Plantas , Timol
8.
Biol Trace Elem Res ; 199(1): 344-370, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32377944

RESUMEN

The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos , Tecnología Química Verde , Extractos Vegetales , Estudios Prospectivos , Espectroscopía Infrarroja por Transformada de Fourier
9.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096854

RESUMEN

An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV-vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13-40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (-19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25-100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.

10.
Antibiotics (Basel) ; 9(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987922

RESUMEN

Improvement of the medical textile industry has received more attention recently, especially with widespread of microbial and viral infections. Medical textiles with new properties, such as bacterial pathogens self-cleaning, have been explored with nanotechnology. In this study, an endophytic actinomycetes strain of Streptomyces laurentii R-1 was isolated from the roots of the medicinal plant Achillea fragrantissima. This is used as a catalyst for the mediated biosynthesis of silver nanoparticles (Ag-NPs) for applications in the textile industry. The biosynthesized Ag-NPs were characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and X-ray Diffraction (XRD), which confirmed the successful formation of crystalline, spherical metal nanoparticles. The biosynthesized Ag-NPs exhibited broad-spectrum antibacterial activity. Our data elucidated that the biosynthesized Ag-NPs had a highly cytotoxic effect against the cancerous caco-2 cell line. The selected safe dose of Ag-NPs for loading on cotton fabrics was 100 ppm, regarding their antibacterial activity and safe cytotoxic efficacy. Interestingly, scanning electron microscope connected with energy dispersive X-ray spectroscopy (SEM-EDX) of loaded cotton fabrics demonstrated the smooth distribution of Ag-NPs on treated fabrics. The obtained results highlighted the broad-spectrum activity of nano-finished fabrics against pathogenic bacteria, even after 5 and 10 washing cycles. This study contributes a suitable guide for the performance of green synthesized NPs for utilization in different biotechnological sectors.

11.
J Biol Inorg Chem ; 24(3): 377-393, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30915551

RESUMEN

In this study, two endophytic actinomycetes isolates Oc-5 and Acv-11, were isolated from healthy leaves of medicinal plant Oxalis corniculata L. These isolates were identified as Streptomyces zaomyceticus Oc-5 and Streptomyces pseudogriseolus Acv-11 using 16S rRNA gene sequence. Biomass extract of these strains were used as a greener attempt for synthesis of copper oxide nanoparticles (CuO-NPs). The synthesized NPs were characterized by UV-Vis spectroscopy, Fourier transform infra-red (FT-IR) spectroscopy, X-ray diffraction (XRD)' transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). Green synthesized NPs showed surface plasmon resonance (SPR) absorption band at 400 nm, crystalline nature, spherical-shaped with an average size of 78 nm and 80.0 nm for CuO-NPs synthesized using strain Oc-5 and Acv-11, respectively. The bioactivities of CuO-NPs were evaluated. Results revealed that CuO-NPs exhibited promising antimicrobial activity against prokaryotic and eukaryotic microbial cells (Gram positive bacteria, Gram negative bacteria, unicellular and multicellular fungi). In addition, it showed antimicrobial potential against phyto-pathogenic fungal strains Fusarium oxysporum, Pythium ultimum, Aspergillus niger and Alternaria alternata. We further explored the in vitro antioxidant activity and cytotoxicity for biosynthesized CuO-NPs. The results revealed that' scavenging and total antioxidant activity for NPs synthesized using Streptomyces pseudogriseolus Acv-11 was better than those synthesized by Streptomyces zaomyceticus Oc-5. Also, the morphological changes and cell viability for Vero and Caco-2 cell line due to NPs treatments were assessed using MTT assay method. Furthermore, Larvicidal efficacy against Musca domestica and Culex pipiens was evaluated. The results obtained in this study clearly showed that biosynthesized CuO-NPs exhibited effective bioactivity and, therefore, provide a base for the development of versatile biotechnological applications soon.


Asunto(s)
Antiinfecciosos/farmacología , Cobre/farmacología , Depuradores de Radicales Libres/farmacología , Insecticidas/farmacología , Nanopartículas del Metal/química , Streptomyces/metabolismo , Animales , Antiinfecciosos/metabolismo , Bacillus subtilis/efectos de los fármacos , Biotecnología/métodos , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cobre/química , Cobre/toxicidad , Culex/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Depuradores de Radicales Libres/metabolismo , Moscas Domésticas/efectos de los fármacos , Humanos , Insecticidas/metabolismo , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Hongos Mitospóricos/efectos de los fármacos , Oxalidaceae/microbiología , Staphylococcus aureus/efectos de los fármacos , Streptomyces/aislamiento & purificación , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA