Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Planta Med ; 85(1): 62-71, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30016827

RESUMEN

In research focused on the discovery of new chemical diversity from freshwater fungi, a peak library was built and evaluated against a prostate cancer cell line, E006AA-hT, which was derived from an African American, as this population is disproportionately affected by prostate cancer. The chemical study of the bioactive sample accessioned as G858 (Delitschia sp.) led to the isolation of eight new α-pyrone derivatives (1:  - 7: , and 11: ), as well as the new 3S*,4S*-7-ethyl-4,8-dihydroxy-3,6-dimethoxy-3,4-dihydronaphthalen-1(2H)-one (15: ). In addition, the known compounds 5-(3-S-hydroxybutyl)-4-methoxy-6-methyl-2H-pyran-2-one (8: ), 5-(3-oxobutyl)-4-methoxy-6-methyl-2H-pyran-2-one (9: ), pyrenocine I (10: ), 5-butyl-6-(hydroxymethyl)-4-methoxy-2H-pyran-2-one (12: ), sporidesmin A (13: ), 6-ethyl-2,7-dimethoxyjuglone (14: ), artrichitin (16: ), and lipopeptide 15G256ε (17: ) were also obtained. The structures of the new compounds were elucidated using a set of spectroscopic (NMR) and spectrometric (HRMS) methods. The absolute configuration of the most abundant member of each subclass of compounds was assigned through a modified Mosher's ester method. For 15: , the relative configuration was assigned based on analysis of 3 J values. Compounds 1, 2, 5:  - 14, 16: , and 17: were evaluated against the cancer cell line E006AA-hT under hypoxic conditions, where compound 13: inhibited cell proliferation at a concentration of 2.5 µM.


Asunto(s)
Antineoplásicos/farmacología , Ascomicetos/química , Neoplasias de la Próstata/patología , Pironas/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Agua Dulce/microbiología , Humanos , Masculino , Pironas/química , Pironas/aislamiento & purificación
2.
PLoS One ; 7(10): e46687, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056404

RESUMEN

BACKGROUND: Nodulisporic acids (NAs) are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. METHODS AND RESULTS: Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. CONCLUSIONS AND SIGNIFICANCE: Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a fungal organism, whether from environmental sequences, vegetative mycelia or field specimens, resulting in holistic species concepts critical to the assessment of the dimensions of fungal diversity.


Asunto(s)
Endófitos/metabolismo , Alcaloides Indólicos/metabolismo , Insecticidas/metabolismo , Xylariales/metabolismo , ADN de Hongos/genética , Endófitos/clasificación , Endófitos/genética , Estructura Molecular , Filogenia , Xylariales/clasificación , Xylariales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA