Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EFSA J ; 22(2): e8563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322232

RESUMEN

Quillaia extract (E 999) was re-evaluated in 2019 by the EFSA Panel on Food Additives and Flavourings (FAF). EFSA derived an acceptable daily intake (ADI) of 3 mg saponins/kg bw per day for E 999. Following a European Commission call for data to submit data to fill the data gaps, the present follow-up opinion assesses data provided by interested business operators (IBOs) to support an amendment of the EU specifications for E 999. Additionally, this opinion deals with the assessment of the proposed extension of use for E 999 in food supplements supplied in a solid and liquid form, excluding food supplements for infants and young children and, as a carrier in botanical nutrients. The Panel concluded that the proposed extension of use, if authorised, could result in an exceedance of the ADI at the maximum of the ranges of the mean for children, adolescents and the elderly, and for all populations at the 95th percentile. An additional proposed extension of use for E 999 to be used as a carrier for glazing agents on entire fresh fruits and vegetables has been received. Since no information on the proposed use levels of E 999 on a saponins content basis has been provided by this applicant, the Panel was not able to evaluate the safety of this extension of use. Considering the technical data submitted, the Panel recommended some modifications of the existing EU specifications for E 999, mainly to lower the limits for lead, mercury and arsenic and to include a maximum limit for cadmium and for calcium oxalate. The Panel also recommended that the limits would be expressed on a saponins basis. The Panel proposed to revise the definition of E 999 to better describe the composition in a qualitative way.

2.
EFSA J ; 18(3): e06032, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32874250

RESUMEN

The Panel on Food Additives and Flavourings (FAF) provided a scientific opinion re-evaluating the safety of acetic acid, lactic acid, citric acid, tartaric acid, mono- and diacetyltartaric acids, mixed acetic and tartaric acid esters of mono- and diglycerides of fatty acids (E 472a-f) as food additives. All substances had been previously evaluated by the Scientific Committee for Food (SCF) and by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Hydrolysis of E472a,b,c,e was demonstrated in various experimental systems, although the available data on absorption, distribution, metabolism, excretion (ADME) were limited. The Panel assumed that E472a-f are extensively hydrolysed in the GI tract and/or (pre-)systemically after absorption into their individual hydrolysis products which are all normal dietary constituents and are metabolised or excreted intact. No adverse effects relevant for humans have been identified from the toxicological database available for E472a-f. The Panel considered that there is no need for a numerical acceptable daily intake (ADI) for E 472a,b,c. The Panel also considered that only l(+)-tartaric acid has to be used in the manufacturing process of E472d,e,f. The Panel established ADIs for E 472d,e,f based on the group ADI of 240 mg/kg body weight (bw) per day, expressed as tartaric acid, for l(+)-tartaric acid-tartrates (E334-337, 354) and considering the total amount of l(+)-tartaric acid in each food additive. Exposure estimates were calculated for all food additives individually, except for E 472e and f, using maximum level, refined exposure and food supplements consumers only scenarios. Considering the exposure estimates, there is no safety concern at their reported uses and use levels. In addition, exposure to tartaric acid released from the use of E 472d,e,f was calculated. The Panel also proposed a number of recommendations.

3.
EFSA J ; 18(6): e06152, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32874328

RESUMEN

The Panel on Food Additives and Flavourings (FAF) provided a scientific opinion re-evaluating the safety of Sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) as food additives. The Scientific Committee for Food (SCF) assigned these food additives together with other aluminium-containing food additives a provisional tolerable weekly intake (PTWI) of 7 mg aluminium/kg body weight (bw). In 2008, EFSA established a tolerable weekly intake (TWI) of 1 mg aluminium/kg bw per week. Sodium aluminium silicate was shown in rats to be absorbed to a limited extent at 0.12 ± 0.011%. The Panel considered that potassium aluminium silicate would be absorbed and become systemically available similarly to sodium aluminium silicate. No information on the physicochemical characterisation of sodium aluminium silicate and potassium aluminium silicate when used as food additives has been submitted and only very limited toxicological data were available for sodium aluminium silicate. Exposure to E 554 was calculated based on the reported use levels in food supplements. Exposure to aluminium from this use of E 554 was calculated to exceed the TWI for aluminium. Based on the data provided by interested business operators, the Panel considered that E 555 is not being used as a carrier, but as an inseparable component of 'potassium aluminium silicate-based pearlescent pigments'. The Panel calculated the regulatory maximum exposure to E 555 as a carrier for titanium dioxide (E 171) and iron oxides and hydroxides (E 172). Exposure to aluminium from this single use at the maximum permitted level could theoretically far exceed the TWI. Considering that only very limited toxicological data and insufficient information on the physicochemical characterisation of both food additives were available, the Panel concluded that the safety of sodium aluminium silicate (E 554) and potassium aluminium silicate (E 555) could not be assessed.

4.
Food Chem Toxicol ; 139: 111243, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151604

RESUMEN

The dietary fibre product examined is a pectic polysaccharide extract from carrot (Daucus carota), enriched for pectin fragments comprising mainly rhamnogalacturonan-I (RG-I) (abbreviated product name cRG-I). To assess the safety of cRG-I for use as food ingredient, repeated-dose oral toxicity and in vitro genotoxicity studies were conducted. In the subchronic toxicity study (OECD test guideline 408), Wistar Hannover rats received cRG-I at dietary levels (w/w) of 0%, 2.5%, 5% and 10% for 13 weeks. cRG-I induced no adverse effects in this study. The NOAEL was 10% in the diet (equivalent to 6.9 and 7.8 g cRG-I/kg body weight/day in male and female rats, respectively). A package of three in vitro genotoxicity tests (Ames, mouse lymphoma and micronucleus assay in human peripheral blood lymphocytes) was negative for induction of point mutation and chromosome damage. An initial Ames test showed a weak positive response in Salmonella typhimurium strain (TA1537). This response was non-reproducible and attributed to microbial contamination as subsequent tests with an irradiated batch of cRG-I including a repeat Ames test were negative. cRG-I was therefore considered to be non-mutagenic.


Asunto(s)
Daño del ADN/efectos de los fármacos , Daucus carota/química , Exposición Dietética/efectos adversos , Pectinas/toxicidad , Ramnogalacturonanos/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Dieta , Femenino , Masculino , Pruebas de Micronúcleos , Nivel sin Efectos Adversos Observados , Tamaño de los Órganos/efectos de los fármacos , Pectinas/análisis , Ratas , Ratas Wistar , Ramnogalacturonanos/análisis , Medición de Riesgo , Pruebas de Toxicidad Subcrónica
5.
Mutagenesis ; 25(6): 539-53, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20720197

RESUMEN

In the analysis by Parry et al. [Parry, J. M., Parry, E., Phrakonkham, P. and Corvi, R. (2010) Analysis of published data for top concentration considerations in mammalian cell genotoxicity testing. Mutagenesis, 25, 531-538], 24 rodent carcinogens that were negative in the Ames test were identified that were only positive in mammalian cell tests at concentrations between 1 and 10 mM. These carcinogens can be subdivided into four groups as follows: (1) probable non-genotoxic (non-mutagenic) carcinogens, tumour promoters or negative for genotoxicity in vivo (n=10); (2) questionable carcinogens (n=4); (3) carcinogens with a probable genotoxic mode of action (n=5); (4) compounds where carcinogenicity or in vivo genotoxicity is unknown or unclear (n=5). It is not expected that in vitro mammalian cell tests should give positive results with Group 1 chemicals. Within Groups 2-4, five chemicals were considered a low priority because they could be detected using modified conditions because genotoxicity was associated with precipitate or pH shifts or because non-standard metabolism was required. The remaining nine chemicals were therefore considered most critical in terms of detection of genotoxic activity in mammalian cells. Daminozide was also included because it may have given positive responses between 1 and 10 mM. Many of the reported studies could have given positive results only at >1 mM because 'old' protocols were followed. These 10 chemicals have therefore been retested using modern protocols. Some were negative even up to 10 mM. Others were positive at concentrations <1 mM. Only methylolacrylamide was positive at a concentration >1 mM (2 mM = 202 µg/ml). Low-molecular weight substances may therefore require concentrations >1 mM, but further work is needed. Based on this analysis, it is concluded that the 10 mM upper limit in mammalian cell tests can be lowered without any loss of sensitivity in detecting genotoxic rodent carcinogens. A new limit of 1 mM or 500 µg/ml, whichever is the higher, is proposed.


Asunto(s)
Carcinógenos/análisis , Carcinógenos/toxicidad , Células Eucariotas/efectos de los fármacos , Mamíferos , Roedores , Animales , Pruebas de Carcinogenicidad/métodos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/normas , Células Eucariotas/metabolismo , Humanos , Ratones , Concentración Osmolar , Ratas , Estudios de Validación como Asunto
6.
Environ Health Perspect ; 117(10): 1556-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20019906

RESUMEN

BACKGROUND: Ubiquitous environmental chemicals, including endocrine-disrupting chemicals (EDCs), are associated with declining human reproductive health, as well as an increasing incidence of cancers of the reproductive system. Verifying such links requires animal models exposed to "real-life," environmentally relevant concentrations/mixtures of EDC, particularly in utero, when sensitivity to EDC exposure is maximal. OBJECTIVES: We evaluated the effects of maternal exposure to a pollutant cocktail (sewage sludge) on the ovine fetal reproductive neuroendocrine axes, particularly the kisspeptin (KiSS-1)/GPR54 (G-protein-coupled receptor 54) system. METHODS: KiSS-1, GPR54, and ERalpha (estrogen receptor alpha) mRNA expression was quantified in control (C) and treated (T) maternal and fetal (110-day) hypothalami and pituitary glands using semiquantitative reverse transcription polymerase chain reaction, and colocalization of kisspeptin with LHbeta (luteinizing hormone beta) and ERalpha in C and T fetal pituitary glands quantified using dual-labeling immunohistochemistry. RESULTS: Fetuses exposed in utero to the EDC mixture showed reduced KiSS-1 mRNA expression across three hypothalamic regions examined (rostral, mid, and caudal) and had fewer kisspetin immunopositive cells colocalized with both LHbeta and ERalpha in the pituitary gland. In contrast, treatment had no effect on parameters measured in the adult ewe hypothalamus or pituitary. CONCLUSIONS: This study demonstrates that the developing fetus is sensitive to real-world mixtures of environmental chemicals, which cause significant neuroendocrine alterations. The important role of kisspeptin/GPR54 in regulating puberty and adult reproduction means that in utero disruption of this system is likely to have long-term consequences in adulthood and represents a novel, additional pathway through which environmental chemicals perturb human reproduction.


Asunto(s)
Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Inmunohistoquímica , Técnicas In Vitro , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA