Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 181(2): 683-700, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31378720

RESUMEN

Shifts in the duration and intensity of ambient temperature impair plant development and reproduction, particularly male gametogenesis. Stress exposure causes meiotic defects or premature spore abortion in male reproductive organs, leading to male sterility. However, little is known about the mechanisms underlying stress and male sterility. To elucidate these mechanisms, we imposed a moderate transient heat stress on maize (Zea mays) plants at the tetrad stage of pollen development. After completion of pollen development at optimal conditions, stress responses were assessed in mature pollen. Transient heat stress resulted in reduced starch content, decreased enzymatic activity, and reduced pollen germination, resulting in sterility. A transcriptomic comparison pointed toward misregulation of starch, lipid, and energy biosynthesis-related genes. Metabolomic studies showed an increase of Suc and its monosaccharide components, as well as a reduction in pyruvate. Lipidomic analysis showed increased levels of unsaturated fatty acids and decreased levels of saturated fatty acids. In contrast, the majority of genes involved in developmental processes such as those required for auxin and unfolded protein responses, signaling, and cell wall biosynthesis remained unaltered. It is noteworthy that changes in the regulation of transcriptional and metabolic pathway genes, as well as heat stress proteins, remained altered even though pollen could recover during further development at optimal conditions. In conclusion, our findings demonstrate that a short moderate heat stress during the highly susceptible tetrad stage strongly affects basic metabolic pathways and thus generates germination-defective pollen, ultimately leading to severe yield losses in maize.


Asunto(s)
Respuesta al Choque Térmico , Infertilidad Vegetal , Polen/crecimiento & desarrollo , Zea mays/fisiología , Metabolismo Energético , Gametogénesis en la Planta , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Meiosis , Polen/enzimología , Factores de Transcripción/metabolismo
2.
PLoS One ; 11(1): e0146135, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26727123

RESUMEN

Potato production is one of the most important agricultural sectors, and it is challenged by various detrimental factors, including virus infections. To control losses in potato production, knowledge about the virus-plant interactions is crucial. Here, we investigated the molecular processes in potato plants as a result of Potato virus Y (PVY) infection, the most economically important potato viral pathogen. We performed an integrative study that links changes in the metabolome and gene expression in potato leaves inoculated with the mild PVYN and aggressive PVYNTN isolates, for different times through disease development. At the beginning of infection (1 day post-inoculation), virus-infected plants showed an initial decrease in the concentrations of metabolites connected to sugar and amino-acid metabolism, the TCA cycle, the GABA shunt, ROS scavangers, and phenylpropanoids, relative to the control plants. A pronounced increase in those metabolites was detected at the start of the strong viral multiplication in infected leaves. The alterations in these metabolic pathways were also seen at the gene expression level, as analysed by quantitative PCR. In addition, the systemic response in the metabolome to PVY infection was analysed. Systemic leaves showed a less-pronounced response with fewer metabolites altered, while phenylpropanoid-associated metabolites were strongly accumulated. There was a more rapid onset of accumulation of ROS scavengers in leaves inoculated with PVYN than those inoculated with PVYNTN. This appears to be related to the lower damage observed for leaves of potato infected with the milder PVYN strain, and at least partially explains the differences between the phenotypes observed.


Asunto(s)
Antioxidantes/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/virología , Metabolismo de los Hidratos de Carbono , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Regulación Viral de la Expresión Génica , Redes y Vías Metabólicas , Metaboloma , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidad , Especies Reactivas de Oxígeno , Ácido Shikímico/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Virulencia , Replicación Viral
3.
Curr Biol ; 24(14): 1615-1619, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24998529

RESUMEN

Bird pollination has evolved repeatedly among flowering plants but is almost exclusively characterized by passive transfer of pollen onto the bird and by nectar as primary reward [1, 2]. Food body rewards are exceedingly rare among eudicot flowering plants and are only known to occur on sterile floral organs [3]. In this study, we report an alternative bird pollination mechanism involving bulbous stamen appendages in the Neotropical genus Axinaea (Melastomataceae). We studied the pollination process by combining pollination experiments, video monitoring, and detailed analyses of stamen structure and metabolomic composition. We show that the bulbous stamen appendages, which are consumed by various species of passerines (Thraupidae, Fringillidae), are bifunctional during the pollination process. First, the appendages work as bellows organs in a unique pollen expulsion mechanism activated by the passerines. As the birds seize an appendage with their beaks in order to remove it from the flower for consumption, air contained in the appendage's aerenchymatous tissue is pressed into the hollow anther. The resulting air flow causes the expulsion of a pollen jet and the deposition of pollen on the bird's head and beak. Second, the stamen appendages provide a hexose-rich, highly nutritious (15,100 J/g) food body reward for the pollinating passerines. This discovery expands our knowledge of flowering plant pollination systems and provides the first report of highly specialized bellows organs for active pollen transfer in flowering plants. In addition, this is the only known case of a food body reward associated with reproductive structures in the eudicot clade of flowering plants.


Asunto(s)
Flores/fisiología , Melastomataceae/fisiología , Polinización/fisiología , Animales , Aves , Polen
4.
Metabolomics ; 9(3): 599-607, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23678344

RESUMEN

Potentilla anserina L. (Rosaceae) is known for its beneficial effects of prevention of pre-menstrual syndrome (PMS). For this reason P. anserina is processed into many food supplements and pharmaceutical preparations. Here we analyzed hydroalcoholic reference extracts and compared them with various extracts of different pharmacies using an integrative metabolomics platform comprising GC-MS and LC-MS analysis and software toolboxes for data alignment (MetMAX Beta 1.0) and multivariate statistical analysis (COVAIN 1.0). Multivariate statistics of the integrated GC-MS and LC-MS data showed strong differences between the different plant extract formulations. Different groups of compounds such as chlorogenic acid, kaempferol 3-O-rutinoside, acacetin 7-O-rutinoside, and genistein were reported for the first time in this species. The typical fragmentation pathway of the isoflavone genistein confirmed the identification of this active compound that was present with different abundances in all the extracts analyzed. As a result we have revealed that different extraction procedures from different vendors produce different chemical compositions, e.g. different genistein concentrations. Consequently, the treatment may have different effects. The integrative metabolomics platform provides the highest resolution of the phytochemical composition and a mean to define subtle differences in plant extract formulations.

5.
Nat Commun ; 4: 1428, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23385573

RESUMEN

Rumen methanogens are major sources of anthropogenic methane emissions, and these archaea are targets in strategies aimed at reducing methane emissions. Here we show that the poorly characterised Thermoplasmata archaea in bovine rumen are methylotrophic methanogens and that they are reduced upon dietary supplementation with rapeseed oil in lactating cows. In a metatranscriptomic survey, Thermoplasmata 16S rRNA and methyl-coenzyme M reductase (mcr) transcripts decreased concomitantly with mRNAs of enzymes involved in methanogenesis from methylamines that were among the most abundant archaeal transcripts, indicating that these Thermoplasmata degrade methylamines. Their methylotrophic methanogenic lifestyle was corroborated by in vitro incubations, showing enhanced growth of these organisms upon methylamine supplementation paralleled by elevated methane production. The Thermoplasmata have a high potential as target in future strategies to mitigate methane emissions from ruminant livestock. Our findings and the findings of others also indicate a wider distribution of methanogens than previously anticipated.


Asunto(s)
Euryarchaeota/metabolismo , Metano/metabolismo , Rumen/microbiología , Animales , Bovinos , Suplementos Dietéticos , Euryarchaeota/efectos de los fármacos , Euryarchaeota/genética , Ácidos Grasos Monoinsaturados , Funciones de Verosimilitud , Metagenoma/efectos de los fármacos , Metilaminas/metabolismo , Ciclo del Nitrógeno/efectos de los fármacos , Ciclo del Nitrógeno/genética , Filogenia , Aceites de Plantas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aceite de Brassica napus , Rumen/efectos de los fármacos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA